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Abstract– In the low observation noise limit particle filters
become inefficient. In this paper a simple-to-implement
particle filter is suggested as a solution to this well-known
problem. The proposed Local Importance Sampling based
particle filters draw the particles’ positions in a two-step
process that makes use of both the dynamics of the system and
the most recent observation. Experiments with the standard
bearings-only tracking problem indicate that the proposed
new particle filter method is indeed very successful when ob-
servations are reliable. Experiments with a high-dimensional
variant of this problem further show that the advantage of
the new filter grows with the increasing dimensionality of the
system.

Index Terms – Sequential Monte Carlo Methods, Parti-
cle Filters, Hidden Markov Models

I. I NTRODUCTION

In this paper we consider the filtering of non-linear sto-
chastic processes. The problem studied can be formalized
as follows. We consider a sequence of valuesY0, Y1, Y2, . . .
of some Euclidean space, governed by the equations

Xt+1 = a(Xt; ξt+1), X0 ∼ p0(·), (1)

Yt+1 = b(Xt+1; ηt+1), t = 0, 1, . . . (2)

HereXt is the (hidden) state of the system at time stept and

Based on “On Likelihood Adjusted Proposals in Particle Filtering: Lo-
cal Importance Sampling”, by P.Torma, and Cs.Szepesvri which appeared
in the Proceedings of 4th International Symposium on Image and Sig-
nal Processing and Analysis 2005, Zagreb, Croatia, September 2005 [17].
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Yt is the observed signal at the same time step,p0 is the ini-
tial distribution of states at time step zero, andξt andηt are
the process and observation noise processes, respectively.
It is assumed that{ξt} and{ηt} are sequences of indepen-
dent, identically distributed random variables and that they
are also independent of each other. The filtering task is to
determine the posterior,πt(x) = p(Xt = x|Y1, . . . , Yt),
over the states.

Three major factors can be identified that influ-
ence the performance of filtering algorithms: (i)
the spread/peakiness of the process noise;(ii) the
spread/peakiness of the observation noise; and(iii) the
severity of ‘perceptual aliasing’ due tob that makes the re-
covery of the state from the sequence of observations hard
even in the ‘zero noise’ limit.

Particle filters (see e.g. [7, 9, 5]) approximate the poste-
rior by empirical measures of the form

πt(x) =
∑N

k=1 w
(k)
t δ(x−X

(k)
t )

∑N
k=1 w

(k)
t

,

whereX
(k)
t andw

(k)
t represent thekth particle’s position

and weight, respectively, andδ(·) is Dirac’s delta function.
HereX

(k)
t andw

(k)
t are (random) quantities that depend on

the sequence of past observationsY1:t
def= (Y1, . . . , Yt). Us-

ing the above empirical measureπt(x), the estimate of the
expectation of an arbitrary functionh with respect to the
posterior can obtained by

It,N (h) =
∑N

k=1 w
(k)
t h(X(k)

t )
∑N

k=1 w
(k)
t

. (3)

The goal is to constructπt such thatIt,N (h) is close to
E[h(Xt)|Y1:t], independently ofh.



The generic particle filter works by updating the parti-
cle’s positions and weights in a recursive manner. The up-
date is composed of two steps: computation of the parti-
cle’s new positions is done by sampling from the so-called
proposal function, followed by the update of the weights
and the optional resampling step [7]. In the bootstrap fil-
ter [7] the particle’s positions are updated independently of
each other by sampling thekth particle’s new position using
a(X(k)

t ; ξ(k)
t ), whereξ

(k)
t is sampled from the common un-

derlying distribution of the process noise variablesξt, whilst
the weight of thekth particle is computed by evaluating the
observation likelihoodp(Yt|X(k)

t+1).

When the level of the observation noise is low, the obser-
vation likelihood function becomes ‘peaky’. In other words
it becomes concentrated around its modes. In such a case if
the position of a particle is not sufficiently close to one of
these modes then the particle’s weight will become small.
This causes a serious increase of the variance of the es-
timate when most except a few particles have very small
weights. This is easy to see if we notice that those parti-
cles whose weights are small do not effectively contribute
to the estimateIt,N (h). Hence, the estimate’s variance will
be of the same order as if the number of particles would be
changed to the number of particles that have significantly
non-zero weights. Since the variance is inversely propor-
tional to the number of particles, we get that if many parti-
cles have close to zero weights except a few ones then the
variance of the estimate increases. The situation is not bet-
ter either if all particles have small weights. In this case all
particles are in the tails of the observation likelihood. Since
the tail is typically very poorly modelled, the quality of the
posterior’s estimate will be poor, too. We call the problem
that with increasingly more peaky observation functions the
performance of particle filter can be expected to decrease
the“curse of reliable observations”. Note that the curse of
reliable observations is not a theoretical question: In many
real world applications when the sensors are accurate (e.g.
vision) the observations are very reliable.

In fact, the curse of reliable observations is a well-known
peculiarity of particle filters. The general advise to rem-
edy this problem is to use a proposal that depends on the
most recent observation [5]. However, in some cases find-
ing a proposal that is tractable, has no false peaks and still
yields good performance can be notoriously hard. Another
often used method is to replace the observation likelihood
function by one which is less peaky. This method trades
off approximation error (of the system’s observation likeli-
hood) and estimation error. Finding the right balance be-
tween these two sources of error can be quite cumbersome.
A straightforward alternative to these methods is to increase
the number of particles until a sufficiently high number of
particles is placed close to the peaks of the observation like-
lihood function (in fact, this can be done adaptively). Un-
fortunately, for high dimensional systems, quite common in
applications (e.g. [12, 8]), this approach may become infea-
sible because it may require an enormous number of parti-
cles: One expects that the number of particles will scale ex-

ponentially with the dimensionality of the system. Hence
new methods that scale well to high-dimensional spaces
even when the observations are reliable are of substantial
interest.

The main idea underlying the algorithms of this paper
relies on the following simple observation: Since the main
source for the inefficiency of particle-filters is that the par-
ticles’ positions are far from the modes of the observation
likelihood, one should let the modes of the likelihood func-
tion ‘attract’ the particles. Hence, after the particles’ po-
sitions are proposed using the prediction density as in the
bootstrap filter, they are allowed to undergo a further ran-
domized adjustment when the most recent observation is
taken into account.

In this paper we consider two methods in details. The
first method, thelocal likelihood samplingbased particle
filter (LLS filter) was first introduced by us in [16] and it is
used to motivate the second one. In the LLS filter the second
sampling step employs a localized version of the observa-
tion likelihood function. Weights are calculated so that the
process remains unbiased. The second algorithm, that we
call thelocal importance samplingbased particle filter (LIS
filter) is the main theme of this paper.1 In this algorithm,
the second step employs a generic proposal density func-
tion that, in general, should match closely the observation
likelihood function. The weight update equations are mod-
ified so that unbiasedness is retained. A practical variant
of the LIS filter that uses mixture of Gaussian proposal and
hence is universal and is still easy to implement is studied
in greater detail.

The paper is organized as follows: In Section II we in-
troduce the necessary notation. This section is followed by
a description of the algorithms (Section III), which is fol-
lowed by a description of related research (Section IV). Ex-
perimental results on variants of the bearings-only tracking
problem are presented in Section V. Here we compare the
performance of the mixture of Gaussian’s based LIS filter
with that of the baseline bootstrap filter and the Auxiliary
Variable Particle Filter (AVPF) [11]. The standard bearings-
only problem is selected as it is a very good example of a
problem when the observations are reliable. We also study
the algorithm in a high-dimensional version of the basic
problem. Finally, our conclusions drawn in Section VI.

II. N OTATION

The following notations will be used throughout the ar-
ticle: for an integrable functionf , I(f) will denote the in-
tegral off with respect to the Lebesgue measure. Convolu-
tion is denoted by∗:

(f ∗ g)(x) =
∫

f(y)g(x− y)dy .

Capital letters such asX,Y will be used to denote ran-
dom variables, whilst their corresponding lower counter-

1This algorithm has been introduced in the conference paper [17] serv-
ing as the basis of this communication.



parts (x, y, etc.) will be used to denote values that they
can take on. Expectation and variance are denoted byE and
Var, respectively.

Let us denote the transition kernel corresponding to the
dynamicsa (cf. (1)) byK = K(u|v), i.e.,

∫
U K(u|v) du =

P (a(v, ξt) ∈ U), whereU is any measurable subset of the
state-space. Further, let us denote the observation likelihood
density byr = r(y|x), i.e.,

∫
Y r(y|x) dy = P (b(x, ηt) ∈

Y), whereY is any measurable subset of the observation
space.

III. A LGORITHMS

A. LLS filters

The basic idea of LLS filters [16] is to draw a sample
from the prediction density as in the bootstrap filter and then
to allow the particles attracted by the modes of the observa-
tion density. A window-function (g) is used to localize the
observation density’s effect on the sample, hence the name
of the procedure. The role of localization is to prevent par-
ticles ‘jump around’ in the state-space. This allows LLS fil-
ters to retain the information available in the previous time
step’s posterior in an effective way. The procedure is shown
in Fig. 1.

Initialize {(Z(k)
0 , 1/N)}N

k=1 from the priorp0(·).
For time pointst = 1, 2, . . .

For particlesk = 1, 2, . . . , N

ResampleSt−1 = {(Z(j)
t−1, w

(j)
t−1)}N

j=1 to obtain

a new sample(Z(k)
t−1

′
, 1/N)

Predict X
(k)
t by drawing a sample fromK(·|Zk

t−1
′)

Perturb X
(k)
t by drawingZ

(k)
t from

1

α
(k)
t

r(Yt|·)g(X(k)
t − ·), where

α
(k)
t =

∫
r(Yt|x)g(X(k)

t − x) dx .

Updateweightw(k)
t using

ŵ
(k)
t = α

(k)
t

K(Z(k)
t |Z(k)

t−1

′
)

K(X(k)
t |Z(k)

t−1

′
)

.

EndFor
Normalize weights usingw(k)

t = ŵ
(k)
t /

∑N
j=1 ŵ

(j)
t .

EndFor

Figure 1. LLS Filter

The following proposition, showing the unbiasedness of
the two-stage sampling step of the LLS filter was shown to
hold in [16]:

Proposition 1. Let (Xt, Yt) evolve according to Equa-
tions (1)-(2). Assume thatg is a non-negative, integrable
function satisfyingI(g) = 1. Let {(ŵ(k)

t , Z
(k)
t )} be the

particle step (with un-normalized weights) obtained at time
stept of the LIS filter. Then

E[ŵ(k)
t h(Z(k)

t )|Y1:t] = E[h(Xt)|Y1:t]p(Yt|Y1:t−1).

This result allows us to conclude that weighted averages
of the form (3) can be used to approximateE[h(Xt)|Y1:t].
In particular, as a consequence convergence results (al-
most sure convergence, convergence in distribution, mean-
square, finite sample performance bounds) can be derived
along the lines of previous proofs (see [3] and references
therein).

Proposition 1 leaves open the question whether the two-
stage sampling step buys anything compared to the sim-
pler procedure of the bootstrap filter. The following result
proven in [16] can be used as a starting point for a positive
answer in some cases:

Theorem 1. Fix X
(k)
t−1. Assume that both the bootstrap

filter and LLS drawX
(k)
t from p(·) def= K(·|X(k)

t−1). Let

s ∈ [1,∞] andf(·) def= r(Yt|·). Then there exists a positive
numberε that depends ons, g andp such that when

〈f, fp〉 ≥ 〈f ∗ g, (fp) ∗ g〉+ εI(f)‖f‖s. (4)

then LLS is more efficient as measured by the variance of its
weights than the bootstrap filter.

The efficiency condition (4) depends crucially on the size
of ε. Using the constructions of [16] it can be shown thatε
measures how fast the tail ofg decays as compared to the
decay rate of the tail ofp. For s = 1 and whenp is uni-
modal and the tail ofg decays faster than the tail ofp, ε can
be shown to be ‘small’. In such a case, condition (4) be-
comes〈f, p〉2 & 〈f ∗g, (fp)∗g〉. Since for typical choices
of g, convolving functions withg cuts high frequencies, the
efficiency condition (4) can be expected to hold for prob-
lems when the prediction density,p, is ‘broad’ as compared
with the observation density,f , i.e., when observation noise
is low compared with the noise of the dynamics.

Note that the algorithm can be generalized easily to
use window functions that change depending onX

(k)
t by

replacing g(X(k)
t − x) in the sample-perturbation step

by g(X(k)
t − x; X(k)

t ) and redefineα
(k)
t by α

(k)
t =∫

p(Yt|x)g(X(k)
t − x;X(k)

t ) dx. The simplest application
of this is to fitg to match the energy distribution of the ob-
servation noise conditioned onX(k)

t . In some applications
it may worth to makeg dependent on the observationYt.

B. Local Importance Sampling

One problem with LLS filters is that unlike bootstrap fil-
ters, they rely on whether sampling fromr(Yt|·)g(X(k)

t −
·)/α

(k)
t is possible (in an efficient way). One possible rem-

edy to this problem is to sample from a proposalqXt,Yt(·)



instead of sampling fromr(Yt|·). The resulting algorithm
that we call Local Importance Sampling is given in Fig. 2.

Initialize a sample set{(Z(k)
0 , 1/N)}N

k=1 according to
the priorp0(·).
For t = 1, 2, . . .

For k = 1, 2, . . . , N

ResampleSt−1 = {(Z(j)
t−1, w

(j)
t−1)}N

j=1

to obtain a new sample(Z(k)
t−1

′
, 1/N)

Predict X
(k)
t by drawing a sample fromK(·|Zk

t−1
′)

Perturb X
(k)
t by drawingZ

(k)
t from the proposalq

modulated by the window functiong, i.e:
Z

(k)
t ∼ 1

α
(k)
t

q
X

(k)
t ,Yt

(·)g(X(k)
t − ·), where

α
(k)
t =

∫
q
X

(k)
t ,Yt

(x)g(X(k)
t − x) dx .

Updateweightw(k)
t using

ŵ
(k)
t = α

(k)
t

r(Yt|Z(k)
t )

q
X

(k)
t ,Yt

(Z(k)
t )

K(Z(k)
t |Z(k)

t−1

′
)

K(X(k)
t |Z(k)

t−1

′
)

.

EndFor
Normalize weights usingw(k)

t = ŵ
(k)
t /

∑N
j=1 ŵ

(j)
t

EndFor

Figure 2. LIS Filter

The following proposition holds:

Proposition 2. Let (Xt, Yt) evolve according to Equa-
tions (1)-(2) and consider the LIS filter. Assume thatg is
a non-negative, integrable function satisfyingI(g) = 1 and
let qx,y(·) > 0 be a bounded, integrable function for all

x, y. Let {(ŵ(k)
t , Z

(k)
t )}N

k=1 be the particle set obtained at
time stept. Then

E[ŵ(k)
t h(Z(k)

t )|Y1:t] = E[h(Xt)|Y1:t]p(Yt|Y1:t−1).

Proof. First note that α(k)
t = (q

X
(k)
t ,Yt

∗ g)(X(k)
t ).

Let h be an arbitrary integrable function and letI =
E[ŵ(k)

t h(Z(k)
t )|Y1:t]. By the law of total probability,I =

E[E[ŵ(k)
t h(Z(k)

t ) |X(k)
t , Y1:t]]. By the definition ofZt and

ŵt,

E[ŵ(k)
t h(Z(k)

t ) |X(k)
t , Y1:t]

=
∫

h(z)(q
X

(k)
t ,Yt

∗ g)(X(k)
t )

r(Yt|z)
q
X

(k)
t ,Yt

(z)

K(z|Z(k)
t−1

′
)

K(X(k)
t |Z(k)

t−1

′
)

q
X

(k)
t ,Yt

(z)g(X(k)
t − z)

(q
X

(k)
t ,Yt

∗ g)(X(k)
t )

dz

=
∫

h(z)
K(z|Z(k)

t−1

′
)

K(X(k)
t |Z(k)

t−1

′
)

r(Yt|z) g(X(k)
t − z) dz ,

and hence by Fubini’s theorem

I =
∫ ∫

h(z)
K(z|Z(k)

t−1

′
)

K(x|Z(k)
t−1

′
)

r(Yt|z) g(x− z) dz

K(x|Z(k)
t−1

′
) dx

=
∫

h(z)K(z|Z(k)
t−1

′
)r(Yt|z) dz ,

which equals the posterior multiplied byp(Yt|Y1:t−1), fin-
ishing the proof.

Similarly to Proposition 1, this statement shows that the
two-step sampling step of LIS filter is unbiased. Hence,
we can expect that LIS filters will enjoy similar theoretical
properties as the bootstrap filter, or the more general SIR
filters [7]. Building on our previous argument, it is not hard
to show that LIS is more efficient than the bootstrap filter
under conditions when LLS is more efficient than the boot-
strap filter and when the proposal functionqx,y fits r(y|·)
aroundx for any x, y. Instead of developing such a the-
oretical result, the efficiency of the new algorithm will be
demonstrated in the experimental section on a number of
problems.

C. Using Gauss-Mixture Proposals in LIS filters

If in LIS the window function is chosen to be a Gaussian
and the proposal function is chosen to be a mixture of
Gaussians at the same time, we get a particularly attractive
algorithm. First, since continuous densities can be well-
approximated to any error by mixtures of Gaussians [14, 13]
the resulting algorithm retains it generality. Further, as we
show it now, the algorithm can also be implemented effi-
ciently.

Let u = (x, y) and chooseqx,y = qu to be a
mixture of Gaussians withn components, having priors
pu,1, . . . , pu,n, meansµu,1, . . . , µu,n and covariance matri-
cesΣu,1, . . . , Σu,n. Then

qu(z) =
n∑

i=1

pu,i
e−1/2(z−µu,i)

T Σ−1
u,i(z−µu,i)

((2π)N |Σu,i|)1/2
. (5)

Let the window function be a zero-mean Gaussian with vari-
anceΣg:

g(z) = ((2π)N |Σg|)−1/2e−1/2zT Σ−1
g z. (6)

In order to implement the LIS filter one needs to be
able to draw samples fromqu(·)g(x − ·) and to evaluate
(qu ∗ g)(x). For the above specific choices, it turns out that
qu(·)g(x−·) is a mixture of Gaussians, too with covariances
and means defined by the following equations:

Cu,i = (Σ−1
u,i + Σ−1

g )−1, (7)

νu,i = Cu,iΣ−1
g x + Cu,iΣ−1

u,iµu,i, (8)



and unnormalized weights:

Lu,i = pu,i
e−1/2(µu,i−x)T Σ−1

u,iCu,iΣ
−1
g (µu,i−x)

((2π)N |Σu,i||Σg|/|Cu,i|)1/2
. (9)

Let Lu =
∑n

i=1 Lu,i. Notice that (qu ∗ g)(x) = Lu.
Further, sampling fromqu(·)g(x − ·) can be implemented
by first drawing an index from the normalized weights
(Lu,1/Lu, . . . , Lu,n/Lu) and then drawing a sample from
the appropriate Gaussian. The corresponding calculations
are further elaborated on in Fig. 3 for a single particle and a
single time-step (time indeces and conditioning on previous
samples/observations are dropped).

Inputs: prediction density (K(.|X)), observation density
(r(.|Y )), observation (Y ), Gauss-mixture proposalqu

• Draw thejth particleXj from K(.|X). Let u =
(Xj , Y ).

• Calculate the Gauss-mixture parameters (νu,i, Cu,i,
Lu,i) of qu(·)g(Xj = ·) using Equations (7)–(9).

• Draw an indexk from
{

Lu,i

Lu

}n

i=1

• Draw Zj from a Gaussian with meanνu,k and co-
varianceCu,k.

• Calculate the weight

wj =

(
n∑

i=1

Lu,i

)
f(Zj)
qu(Zj)

K(Zj |X)
K(Xj |X)

.

Figure 3. Local Importance Sampling with mixture of Gaus-
sians proposals and Gaussian window function (qx,y(z) is
defined by (5), andg(z) is defined by (6))

IV. RELATED WORK

The Local Likelihood Sampling (LLS) algorithm, that
was briefly overviewed in Section III.A, was introduced in
[16]. Here we generalized the idea underlying LLS to ob-
tain a new algorithm, the Local Importance Sampling (LIS)
based particle filter. LIS filters are more flexible than LLS
filters, whilst we believe that they retain the advantages of
LLS filters.

One of the best known particle filter whose aim is to
overcome the curse of reliability is theAuxiliary Vari-
able Particle Filter (AVPF)introduced by Pitt and Shep-
hard [11]. In addition to the bootstrap filter, AVPF is the
baseline particle filter used in our experiments. AVPF is
an instance of the generic SIR filter [7]. It uses a pro-
posal density of the formq(xt|X(1)

t−1, . . . , X
(N)
t−1 , Yt) ∝

∑N
k=1 r(Yt|X(k)

t )K(xt|X(k)
t−1), whereX

(k)

t is the expected

next state for particlek: X
(k)

t = E[a(X(k)
t−1, ξt)|X(k)

t−1].
2

2The generic AVPF leaves open the choice ofX
(k)
t . In practice, the

Sampling is implemented by first doing a weighted resam-

pling step using the weightsr(Yt|X(k)

t ) and then drawing
the next states using the transition density kernelK. An-
other trick is to compute the unnormalized weight of parti-

cle k by r(Yt|X(k)
t )/r(Yt|X(pk)

t ), wherepk is the index of
the particle that was used to drawX(k)

t (see Section 13.3.2,
[6]).

AVPF is similar to LLS/LIS filters in that it also allows
the observation to influence the sampled positions of the
particles. This makes AVPF somewhat more efficient than
the bootstrap filter when the observation density is peaky.
However, as this influence is still moderate (since the par-
ticles’ positions are still sampled from the prediction den-
sity) highly peaked observation functions or when the pre-
diction density is broad, AVPF’s performance will still de-
grade unless the number of particles is kept high. Another
issue arises when the prediction density is multi-modal. In
this case using the expected next states does not make sense

as the “predictor variables”X
(k)

t . In such a case one must
typically resort to sampling from the kernelK, further in-
creasing the variance. The advantage of AVPF to LIS filters
is that in LIS filters the user has to design the proposals,
though we note that this choice can be made automatic by
employing standard density estimation methods.

Another recent method aimed to increase efficiency in
the face of reliable observations islikelihood samplingcon-
sidered e.g. in details in [4]. In this approach it is the like-
lihood functionp(Yt|·) that is used as the proposal, whilst
the prediction density is used to calculate the weights. The
success of this method thus will depend on whether the like-
lihood is a good predictor of the true state. For multi-modal
likelihoods (when aliasing effects are severe) a large num-
ber of particles can be generated away from the likely ‘next’
positions. Such particles will get low weights in the weight-
ing process and thus will have no significant effect on the
estimated posterior thereby increasing the variance of the
estimator. Although LLS/LIS also make use of the likeli-
hood density (or an approximation to it), they first sample
from the prediction density, followed by sampling from alo-
calizedforms of the observation likelihood function. Hence
LLS and LIS will not be adversely affected by multi-modal
observation likelihoods.

The LS-N-IPS algorithm, introduced in [15], can be
thought of as the precursor of LLS/LIS. The difference of
LLS/LIS and LS-N-IPS is that LS-N-IPS modifies the po-
sition of particles in the second stage by letting them climb
the observation likelihood in a deterministic way. Hence,
this algorithm introduces some additional bias and relies
on the availability of a method to climb the observation
likelihood. Although, according to the well-known bias-
variance dilemma, introducing bias is not necessarily ‘bad’,
LLS/LIS filters can achieve the same variance reduction
without introducing any additional bias.3 Another advan-

choice shown here is one of the most frequently used ones.
3Note that weighted importance sampling itself yields biased estimates

of the posterior.



tage of, LLS/LIS filters is that they do not rely on the avail-
ability of a hill-climbing algorithm.

Boosted particle filters (BOOPF) [10] are probably the
closest to LLS/LIS filters in their spirit. BOOPF is another
instance of SIR. Its proposal, using our notation can be writ-
ten in the form:

q(·|Xt−1, Yt) = α(Xt, Yt) r(Yt|·)g(Xt − ·)
+

(
1− α(Xt, Yt)

)
K(·|Xt−1),

whereXt is the expected next state givenXt−1, g is a rec-
tangular window function and

α(x, y) =

{
A, if r0 < maxx′:d(x′,x)≤λ r(y|x′);
B, otherwise.

Here0 < B ¿ A < 1, andr0, λ are parameters to be
chosen by the user. In effect, BOOPF will sample the next
state from the localized version of the observation likeli-
hood when the observation likelihood is sufficiently large
in a neighborhood of the expected next state, whilst in the
other case the prediction density is used to sample the next
state.4 In any case, the above proposal depends on the most
recent observation and drawing samples from it can be done
in an efficient manner. Unlike LLS/LIS, BOOPF’s perfor-
mance degrades when the prediction density is multi-modal
or when it has a large variance as in such cases the expected
value of the next state is a bad predictor of where the next
state might be.

V. EXPERIMENTS

The purpose of this section is to present the results of
a series of experiments the LIS filter is compared with the
baseline bootstrap filter and AVPF, the purpose being to sys-
tematically compare LIS with these other algorithms in a
controlled environment. We have chosen the bearings-only
tracking problem, described in the section, as the tracking
problem to be used. Actually, we used two versions of
this problem: The standard single object version where the
problem is to track a single ship by using angular measure-
ments only and a version with more than one ship, where
the ships move independently of each other and the obser-
vations carry information about the identity of the ships that
they originate from. The purpose of considering this sec-
ond problem was to study the scaling properties of the al-
gorithms studied as a function of the dimensionality of the
state space.

A. The Bearings-only Problem

The ‘bearings-only tracking’ problem has been consid-
ered previously by several authors [7, 11, 2, 1]. The aim is
to track the motion of a ship, while observing only angles to
it. The problem is illustrated on Fig. 4. Without the loss of

4The algorithm as presented in [10] uses heuristically derived approx-
imations to the observation likelihood and it is slightly more complicated
than the one presented here, but their essence are the same.
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Figure 4. An example of the ship’s motion. Shown are the
lines connecting the observer and the ship’s positions. The
ship is moving in a top-down direction.

generality the observer’s position is fixed to the origin. The
straight lines connecting the ship’s position and the observer
in subsequent time steps define the angles (with respect to
the horizontal line). These angles corrupted by noise form
the series of observations.

Formally, the ship’s dynamics is second order, with the
horizontal and vertical components developing indepen-
dently of each other:

Xt+1 =




1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1


 Xt + ση




1
2 0
1 0
0 1

2
0 1


 ξt.

Here Xt ∈ R4, ξt ∈ R2, ξt1, ξt2 ∼ N (0, 1). Xt1 and
Xt3 represent the ship’s horizontal and vertical positions,
respectively, whilstXt2 and Xt4 represent the ship’s re-
spective horizontal and vertical velocities. The initial state
is sampled from a 4-dimensional Gaussian with a diagonal
covariance matrix whose parameters will be given later.

The angle to the ship at timet is θt = tan−1(Xt3/Xt1).
The noise corrupting this angle has a wrapped Cauchy den-
sity:

r(y|θt) =
1
2π

1− ρ2

1 + ρ2 − 2ρ cos(y − θt)
.

Provided thatρ is close one, the wrapped Cauchy density
with its high peak around zero and heavy tails is thought to
reflect a sonar’s behaviour well: angular measurements are
typically very reliable with occasional outliers.

The parameters of the system used in the ex-
periments were as follows: When a single ship is
tracked, the initial state is sampled from a Gaussian
with mean (−0.05, 0.001, 0.2,−0.055) and with a diag-
onal covariance matrix with diagonal entries0.001 ×
(0.52, 0.0052, 0.32, 0.012). The magnitude of the process
noise is given byση = 0.001, whilst the parameter of the
wrapped Cauchy distribution isρ = 1− 0.0052.



In the experiments, where three ships are to be tracked,
the initial state is sampled from three Gaussians. For all
of these Gaussians we use the covariance matrix used in
the single-ship experiments. The means of the Gaussian
belonging to first ship are identical to the means used
in the single-ship experiments, whilst the means of the
of the other Gaussian were(0.02,−0.01, 0.6,−0.055) and
(0.05,−0.01,−0.2,−0.02).

In the multi-ship experiments the three ships move in-
dependently of each other. Further, unlike in multi-target
tracking, we assume that the observations are not un-
ordered, i.e., we do not consider here the ambiguity of
the assignment of observations to the objects. Formally, if
y1, y2, y3 are the observed angles,θ1,θ2 andθ3 are the an-
gles corresponding to the positions of ships one, two and
three then

r3(y1, y2, y3|θ1, θ2, θ3) = r(y1|θ1)r(y2|θ2)r(y3|θ3).

It should be clear that this model is limited in the sense that
in many cases one would never know the correspondance
between the observations and objects. In fact, the major
source of difficulty for real-world multi-target tracking lies
in resolving this ambiguity. However, our focus here are
the scaling properties of the algorithms as a function of the
dimensionality of the system and for this purpose the above
problem is a just good enough.

B. The Choice of the Proposal for LIS

We first discuss the choice of the proposalqx,y for the
single ship tracking task. The idea underlying the design
is that of observation is simple: the predicted particle posi-
tions should be adjusted to fit closely the observed angles
as the angular measurements are reliable. The actual choice
of the importance functionqx,y is a Gaussian with one of
its axes parallel to the observation angle. The mean ofqx,y

was set to the particle’s position projected to the observation
angle line. To be more exactqx,y is a Gaussian with mean
(x1 cos2(y) + x3 sin2(y)), wherey is the observed angle,
whilst the covariance is set toUΛUT with

U =
(

cos(y) − sin(y)
sin(y) cos(y)

)

and

Λ =
(

κσ2 0
0 σ2

)
.

Hereκ > 0 is a design parameter defining the ratio of the
variance along the axis parallel to the observed angle to the
variance along the orthogonal axis. Its value is chosen ar-
bitrarily to be100.5 A reasonable value forσ2, the vari-
ance along the orthogonal axis, is the value that makes the
Gaussian fit the Wrapped Cauchy observation density the
best. We used this value in our experiments.

As U is independent of the particles’ positions,U can be
precomputed at the beginning of the sampling steps, leaving

5Lately, we have found that smaller values (up to a point) give better
results.

only the calculation of the Gaussians’ means in the body of
the loop. The window functiong is defined as a zero-mean
Gaussian with covariance matrix

C =
(

δg 0
0 δg

)
.

It is easy to see that these choices enable us to use the
Gaussian-mixture LIS (cf. Fig. 2).

We must remark that the proposal function and the win-
dow function as defined above depend only on the position
of the ship. Hence, when a particle’s state is adjusted in the
second sampling step, its velocity component must be ap-
propriately adjusted (in a deterministic manner). Although,
strictly speaking, this procedure does not fit the description
of LIS, it can be shown by some limiting arguments that the
it still gives unbiased samples.

C. Results for Single Ship Tracking

Particle filters have many qualities that must be taken
into account for their meaningful comparison. These in-
clude (i) tracking performance, (ii) computation cost, (iii)
memory needs, and (iv) ease of implementation. As far as
implementation easiness is concerned, the bootstrap filter
is a clear winner. The implementation easiness of LIS and
AVPF are not that easy to compare, as both have a number
of design parameters whose tuning typically requires expe-
rience and insight. Our experience is that LIS and AVPF
are roughly equal as far as their implementation easiness is
concerned.

In the rest of this section we compare these filters in
a qualitative manner. The tracking error defined as the
Euclidean distance between the mean predicted and the
actual ship positions was used as the basis of the mea-
surements. Measurements were made along trajectories of
length 10, following the literature. The tracking errors were
measured with10 independent state-observation sequences,
whilst keeping the initial position fixed. Unless otherwise
noted, each result is the average of 100 runs for these 10
sequences.

The simplest way to compare particle filters is by their
tracking error whilst the number of particles is kept the
same. Fig. 5 shows such results as a function of time steps.
Here the number of particles is kept at100 for all algo-
rithms. As expected, AVPF performs better than the base-
line bootstrap filter. LIS improves upon the performance of
both the bootstrap filter and AVPF quite significantly. In or-
der to develop an understanding of what these performance
differences mean, we present ‘particle clouds’ generated by
the three algorithms for an arbitrary selected time-step in
Fig. 6. It should be clear from the figure that the particle
set generated by LIS is much better concentrated along the
lines pointing towards the true state than the sets generated
by both AVPF and the bootstrap filter. Literally, LIS makes
a better use of the available information. Moreover, the par-
ticle sets generated by AVPF are more concentrated around
the true state than those generated by the bootstrap filter.
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The running time of all the considered algorithms scales
linearly with the number of particles. Hence in real-time
applications where the per iteration time is limited, the run-
ning time will limit the number of particles that can be used.
Since the per particle cost of the algorithms is different,
the slower algorithms’ performance will suffer more from
real-time constraints. Comparing the computational cost
of algorithms is not easy. Here we provide both a detailed
analysis of the per particle computations for each of the al-
gorithms, as well as the results of some empirical results.
Table 1 shows a detailed account for the various elementary
computational steps for the algorithms considered. This ta-
ble can serve as the basis of predicting the running times
of the various algorithms. For example, in computer vision
applications the evaluation of the observation density is the
far most expensive step as it involves calling the actual im-
age processing routines. In other applications (like the one
considered here) the various steps have roughly the same
cost. In such a case, LIS withN particles can be expected

to be cheaper to execute than the bootstrap filter withM
particles or AVPF withK particles if3.5N < M , and re-
spectively,1.75N < K. The next table (Table 2) shows

BPF AVPF LIS IS
Sampling from 1 2 1 0
the dynamics
Evaluating the 1 2 1 1
obs. density
Evaluating the 0 0 2 1
dyn. density
Sampling from 0 0 1 1
the proposal
Proposal Density 0 0 1 1
Evaluation
Preprocessing 0 0 1 0

Table 1. Per-particle computation steps of the bootstrap fil-
ter (BPF), AVPF, LIS and Importance Sampling(IS). Pre-
processing for LIS is the calculation of the means of two
Gaussians. This boils down to computing two matrix-vector
products, implementable with8 multiplications.

the actual measured running times of the algorithms.6 The
codes of the three algorithms were written in C++ and all
of them have reasonable implementations. No special ef-
fort was made, except those already mentioned, to optimize
the codes of the algorithms. The table shows both the total
CPU time when the number of particles is the same for all
the three algorithms and the total CPU time when the parti-
cle numbers are set so that the errors of the algorithms are
roughly equal (see Fig. 7). Given this table, we may con-

BPF AVPF LIS
CPU time
with 10000 122ms 590ms 1523ms
particles
CPU time
with 36.6ms 29.5ms 15.2ms
equal error N=3000 N=500 N=100

Table 2. Measured running times of the bootstrap filter
(BPF), AVPF and LIS with equal particle numbers and
equal errors (N is the number of particles)

clude that LIS is roughly12.5 times slower than the boot-
strap filter and is roughly2.6 times slower than AVPF, thus
the theoretical predictions are off by a factor of3.6 and1.5,
respectively. Despite this when the tracking errors are kept
equal we get that LIS is the winner (in terms of execution
time), followed by AVPF and the bootstrap filter.

Fig. 8 shows the tracking error and the deviations of the
errors of the three algorithms in the10th time step for a

6The machine used was a Mobile Intel Celeron 2.5GHz with 256 MB
RAM
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Figure 7. Tracking errors of the bootstrap filter, AVPF and
LIS as a function of time. The particle sizes are set such
that the errors are roughly equal. It can be seen from the
figure that the performance of all three algorithms is the
same uniformly in time.

number of sample sizes. As expected, the error decays
(although not very rapidly) as the number of particles is
increased for all the three algorithms. Interestingly, LIS
keeps a considerable margin over the other algorithms over
the range investigated, though its gain, by the nature of the
problem studied, decreases when the number of particles is
increased.
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Figure 8. Tracking errors of the bootstrap filter, AVPF and
LIS and the deviation of the error as a function of the num-
ber of particles

In the above experiments the standard deviation of the
window functionσg was set to0.0005 and the ratio para-
meterκ of the proposal was set to100. In order to test
the sensitivity of LIS to these parameters we experimented
with a number of values for these parameters. First, the
window parameter was changed. This resulted in no signif-
icant changes in the performance as long as the parameter
was kept in a reasonable range. It should be clear, however,

that if the window size is too small then LIS degrades to the
bootstrap filter. As remarked earlier, smaller values ofκ, the
parameter that governs how much we trust in the predicted
distance of the ship, were found to yield to enhance perfor-
mance. Asκ and the window size both grow to infinity the
algorithm degrades to likelihood sampling.

D. Results for Tracking Multiple Ships

Several real-world tasks require tracking of objects in
high-dimensional spaces. In this section we study the per-
formance of the algorithms for the simplified multi-object
tracking problem that was described informally in Section
V. A. . Formally, we assume that the observation likelihood
for the observationsY1, . . . , YM (assumingM ships) is of
the product form:

r(Y1, . . . , YM |θ1, . . . , θM ) =
M∏

k=1

r(Yk|θk).

Clearly, whenM ships are tracked, the dimension of the
state becomes4M . In reporting the errors the Euclidean
distance of the mean predicted and actual positions is di-
vided by the number of ships tracked, so as to allow a mean-
ingful comparison of results obtained with differing ship-
numbers. Exploiting the simple structure of the problem,
the proposal of LIS is chosen to take a product form, just
like the window functions.

In the first set of experiments 3 ships were tracked, re-
sulting in a state-space of dimension 12. Fig. 9 shows
the tracking errors of the algorithms as a function of time.
These results were obtained with10 tracking sequences and
100 runs for each sequences. Compared with Fig. 5, we ob-
serve that the advantage of LIS against the other algorithms
increases considerably.
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Figure 9. The average tracking error of the bootstrap filter,
AVPF and LIS on the multi-object tracking problem with
10 particles

In order to gain further insight into the relative efficiency
of these algorithms we present results for the equal CPU



time case, as well. Table 3 serves as the basis for comput-
ing the respective particle numbers. We note that as com-
pared with the results for tracking a single ship, the exe-
cution times for the bootstrap filter and AVPF are doubled
only, whilst that of for LIS are tripled. The better than ex-
pected execution times for the bootstrap filter and AVPF are
a bit of surprising. We conjecture that some low-level mech-
anisms (caching, loop unrolling) might have caused this dif-
ferences. Based on these results, the number of particles in

BPF AVPF LIS
CPU time
with 10000 245ms 796ms 4597ms
particles
CPU time
with 245ms 238ms 4.6ms
equal error N=10000 N=3000 N=10

Table 3. Measured running times of the bootstrap filter
(BPF), AVPF and LIS with equal particle numbers and
equal errors (N is the number of particles) for tracking 3
ships (N is the number of particles)

the subsequent experiments was set to10, 50 and100, re-
spectively. Fig. 10 shows the resulting tracking errors as a
function of time steps. LIS again clearly performs better
than the other algorithms, despite that it uses10 particles
only. Figs. 11–13 plot the particle clouds for the three algo-
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Figure 10. Average tracking error for the bootstrap filter,
AVPF and LIS when tracking 3 ships. The number of par-
ticles are set to100, 50 and10, respectively so as to ensure
that the algorithms’ running times are the same.

rithms. Note that on these figures a single particle is repre-
sented by 3 points. We also remark that the horizontal and
vertical scales are different in these figures. This creates the
(wrong) impression that the estimated posterior’s variance
in the horizontal direction for both the bootstrap filter and
AVPF were larger than the variance in the vertical direction.
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Figure 11. Illustration of the posterior representation of the
bootstrap filter when 3 ships are tracked simultaneously.
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represented by larger circles. The figure also shows the
straight lines connecting the observer’s position with po-
sitions of the ships.

Figs. 14–16 show the sample paths of the ships together
with the mean predicted positions for a given sequence. In
these plots the number of particles are1000 for the boot-
strap filter,200 for AVPF and10 for LIS. Visual inspection
reveals that LIS indeed makes a better use of the available
information in the observations. In fact, the figures show
that the error of tracking of the second ship becomes overly
large for the bootstrap filter, whilst for AVPF the error be-
comes somewhat large both for the second and the first ship.
Although the tracking error towards the last steps increases
for ship 2 for LIS, LIS’s errors are still much smaller than
those obtained for the other algorithms for all ships and al-
most all time steps.

For the sake of completeness, the average tracking error
with the corresponding standard deviations are plotted in
Fig. 17 as a function of the number of particles. The figure
confirms that tracking errors decrease with increasing the
number of particles. Again, LIS is able to keep its margin
over the range investigated.

Fig. 18 compares the tracking error and its standard de-
viation for LIS and the bootstrap filter when the number of
objects to be tracked is increased from2 to 20. As noted be-
fore, the Euclidean distance is normalized by the number of
ships so as to allow a meaningful comparison between re-
sults of tracking when the object numbers are different.7 In
these experiments the ships’ initial positions were set sys-
tematically with equal spacings along a circle with a fixed
radius and setting the initial velocity direction to the tan-
gent of the circle at the initial point. We remark that when
the number of ships is 20, the state-space is 80 dimensional.

In these experiments only the bootstrap filter and LIS
were compared. As it can be observed from the figure, the
performance of the bootstrap filter degrades as the dimen-

7This normalization causes the decrease of the standard deviations.
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Figure 12. Illustration of the posterior representation of
AVPF when 3 ships are tracked simultaneously. The num-
ber of particles is50.
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Figure 13. Illustration of the posterior representation of LIS
when 3 ships are tracked simultaneously. The number of
particles is10.

sionality is increased, whilst the performance of LIS stays
steady. The degradation of the performance of the boot-
strap filter is not as severe as one would expect due to the
smoothness of the dynamics of the system (for less smooth
systems the error might blow up exponentially).8 We think
that it is quite encouraging that the tracking error of LIS
is not effected by the increased dimensionality, raising the
hope that LIS could be used as a basis of efficient particle
filters that are able to track very high-dimensional systems
with a fairly high precision.

VI. CONCLUSIONS

The ‘curse of reliable observations’ refers to the well-
known limitation of particle filters that increasingly reliable

8In fact, we suspect that the errors atN = 20 are very close to the error
level that can be obtained by pure prediction given the initial state and not
taking into account the observations.
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Figure 14. The ships’ trajectories and the corresponding
mean predicted positions of the 3 ships for the bootstrap
filter with 1000 particles
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Figure 15. The ships’ trajectories and the corresponding
mean predicted positions of the 3 ships for AVPF with200
particles

observations causes their performance to degrade. In this
paper we have considered a family of particle filters that are
designed to avoid this curse. These algorithms are modifi-
cations of the standard bootstrap filter whereas after the pre-
diction step, the particles are randomly relocated in a second
sampling step where sampling is restricted to a neighbour-
hood of the current position and is influenced by the most
recent observation. Depending on whether this second step
uses the observation density directly or an importance func-
tion, the resulting algorithms are called the Local Likeli-
hood Sampling (LLS) or Local Importance Sampling (LIS)
based particle filters. LLS was proposed earlier in [16],
whilst LIS is proposed here. We have argued that LLS and
LIS are more efficient than previous algorithms when the
observations are reliable and that they can actually avoid the
curse. Experiments with the standard bearings-only track-
ing problem and one multi-object version confirmed this ex-
pectation. Importantly, as compared to the bootstrap filter
and AVPF, LIS was found to be increasingly more efficient
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Figure 17. Tracking errors of the bootstrap filter, AVPF and
LIS and the deviation of the error with different particle
sizes when tracking 3 ships

as the dimensionality of the system to be tracked was in-
creased. This raises the hope that based on LIS efficient
particle filters might be designed for the open problem of
tracking objects in very high-dimensional spaces.
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