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Abstract: A modification of N-IPS, a well known particle filter method is proposed
and is shown to be more efficient than the baseline algorithm in the small sample size
limit and when the observations are “reliable”. The algorithm called LS-N-IPS adds
local search to the baseline algorithm: in each time step the predictions are refined
in a local search procedure that utilizes the most recent observation. The uniform
stability of LS-N-IPS is studied and results of experiments are reported both for a
simulated and a real-world (visual) tracking problem.

Keywords: Particle filter, N-IPS, Visual Tracking

1. INTRODUCTION

With the increase of computational power non-
linear filtering and in particular methods based
on particle filtering are gaining importance. Vari-
ants of the N -Interacting Particle System (N-IPS)
filter (Del Moral, 1998) have been successfully
used in many applications, e.g. visual tracking,
radar image localisation and volatility prediction
(see e.g.(Isard and Blake, 1998) and (Pitt and
Shephard, 1999)).

Although the computational power of today’s
computers made particle filtering practical in
some applications, the majority of on-line filtering
tasks still remains outside of the realm of prob-
lems solvable with this class of algorithms. Since
the computational requirements of N-IPS grow
linearly with the number of particles, a natural
idea is to try to reduce the number of particles
whilst keeping the performance the same so as to
broaden the class of problems that can be tackled
by particle filtering.

In this article we propose a modification of the N-
IPS algorithm, which we shall call LS-N-IPS (local
search+N-IPS). LS-N-IPS is intended to improve

the efficiency of the N-IPS algorithm under the
assumption that the observations are sufficiently
“reliable”. Roughly, this assumption means that
the conditional variance of the observation noise
given the past states is smaller than that of the
dynamics.

It is well known that under this assumption N-
IPS does not perform very well since most of the
particles will bear a small likelihood owning to the
sensitivity (peakiness) of the observation density.
Therefore, in such a case typically a large number
of particles are needed to achieve even a moderate
precision.

We believe that the “reliability assumption” holds
in many practical cases and is worth of being
studied. In particular, in this article we provide
an example with this property from the domain
of vision based object tracking. We show both
on this tracking problem and in a simulated sce-
nario (where qualitative measurements are easier
to make) that LS-N-IPS is significantly more effec-
tive than N-IPS. We also prove a uniform stability
theorem stating the uniform boundedness of the



error of approximation of the posterior estimated
by the LS-N-IPS algorithm in the L1 norm.

The article is organized as follows: In Section 2 we
introduce the LS-N-IPS algorithm. In Section 3 we
prove the above mentioned stability theorem. Re-
sults of some experiments in a simulated scenario
are presented in Section 4, whilst the results on a
real-world object tracking problem are presented
in Section 5. A short discussion of related work is
presented in Section 6, and conclusions are drawn
in Section 7.

2. THE LS-N-IPS ALGORITHM

Let us consider the filtering problem defined by
the system

Xt+1 = f(Xt) + Wt, (1)

Yt = g(Xt) + Vt, (2)

where t = 0, 1, 2, . . ., Xt,Wt ∈ X , Yt, Vt ∈ Y,
and Wt, Vt are zero mean i.i.d. random variables.
Let the posterior given the observations Y0:t =
(Y0, . . . , Yt) be πt:

πt(A) = P (Xt ∈ A|Y0:t),

where A ⊂ X is any measurable set.

The proposed “Local Search”-modified N-IPS al-
gorithm (LS-N-IPS) is as follows (N is the number
of particles):

(1) Initialization:
• Let X(i)

0 ∼ π0, i = 1, 2, . . . , N and set
t = 0.

(2) Repeat forever:
• Compute the proposed next states by

Z(i)
t+1 = Sλ(f(X(i)

t ) + W (i)
t , Yt+1), i =

1, 2, . . . , N .
• Compute w(i)

t+1 ∝ g(Yt+1|Z(i)
t+1), i =

1, 2, . . . , N . 1

• Sample k(i)
t+1 ∝ (w(1)

t+1, . . . , w
(N)
t+1), i =

1, 2, . . . , N .

• Let X(i)
t+1 = Z

(k(i)
t+1)

t+1 , i = 1, 2, . . . , N .

The only difference between the LS-N-IPS and the
N-IPS algorithms is in the update of the proposed
states. Here LS-N-IPS uses a non-trivial local
search operator, Sλ, to “refine” the predictions
f(X(i)

t )+W (i)
t , whilst in N-IPS one has Sλ(x, y) =

x.

Our requirement for Sλ in LS-N-IPS is that it
should satisfy g(y|Sλ(x, y)) ≥ g(y|x). The pa-
rameter λ > 0 defines the “search length”: Sλ

is usually implemented as a (local) search trying
to maximize g(y|·) around x, in a neighborhood

1 Here g(y|x) denotes the observation density function of
the system to be filtered (cf. Equation 2).

with size λ, e.g. Sλ(y|x) = argmax{g(y|x̃) | ‖x̃ −
x‖ ≤ λ }.

As a simple example, aiming to show the improved
performance of LS-N-IPS consider the system
defined by Xt+1 = Vt+1, Yt = Xt + Wt, where
var(Wt) << var(Vt). If Sλ(x, y) = y (assuming
that g(y|y) = argmaxxg(y|x)) then the local
search renders all particles to Y , i.e., X(i)

t = Y
and thus the estimate of the position of Xt is
∫

xdπN
t = Yt. Here (and in what follows) πN

t
denotes the estimated posterior corresponding to
the particle system {X(i)

t }N
i=1 of size N . 2 On the

other hand the estimate of the N-IPS model is
given by

Xt =
N

∑

i=1

g(Yt|V (i)
t )

∑N
j=1 g(Yt|V (j)

t )
V (i)

t .

Clearly, under a wide range of conditions E(|Yt−
Xt|2 |Xt) << E(|Xt − Xt|2 |Xt) and in this
sense, the estimate of LS-N-IPS is better than
that of the N-IPS model. If we assume that Vt
and Wt are Gaussian with respective covariances
Q and R then the posterior can be computed
analitically (using the Kalman-filter euqations),
yielding X

∗
t = Q(Q + R)−1Yt. Therefore X∗

t is
close to Yt provided that var(Wt) << var(Vt).

3. UNIFORM CONVERGENCE OF LS-N-IPS

Provided that the system to be filtered is suf-
ficiently regular, the N-IPS model is known to
provide a uniformly “good” estimate of the poste-
rior, for any given particle-set size (see Theorem
3.1 of (Del Moral, 1998)). Here we extend this
result to LS-N-IPS. First let us remark that LS-
N-IPS can be viewed as an N-IPS algorithm where
in each step an approximate dynamics is used
in the prediction step. The approximation error
can be controlled by the search length λ. Hence
we give the theorem for the general case when
approximate models are used in N-IPS.
Theorem 3.1. Let ĝ, K̂t be approximate models,
ε > 0 and π̂0 be an approximation of the prior
π0. Assume that the Radon-Nikodym derivative of
both K and K̂t exist w.r.t. the Lebesgue-measure
and let us denote them by K(x, z) and K̂t(x, z),
respectively. Assume that for some ε̂ > 0 and
â > 0

1
â
≤ ĝ(y|x), g(y|x) ≤ â (3)

and

ε̂ ≤ K̂t(x, z),K(x, z) ≤ 1
ε̂
. (4)

2 πN
t (A) = (1/N)

∑N
i=1 χA(X(i)

t ), where χA is the char-
acteristic function of the measurable set A.



Further, assume that for some β > 0 these ap-
proximate entities satisfy

sup
y

h(Gy, Ĝy), h(F, F̂t), h(π0, π̂0) ≤ β,

where h is the Hilbert projective metrics (G.Birkhoff,
1967), Gy : L1(X ) → L1(X ) is defined by
(Gyf)(x) = g(y|x)f(x) and F is the Markov
operator corresponding to K. Ĝy, F̂t are defined
in an analogueosly. Consider the N-IPS model
based on the approximate models and the approx-
imate prior. Consider the empirical posterior π̂N

t
as computed by this N-IPS algorithm. Then the
uniform bound

sup
t≥0

E( |
∫

fdπ̂N
t −

∫

fdπt| |Y0:t ) ≤

5 exp(2γ̂′)
N α̂/2 +

4β
log(3)(1− tanh(C(K)/4)

(5)

holds for any N ≥ 1 and for any measurable
function f satisfying ‖f‖∞ ≤ 1, where γ̂′ and α̂
are defined by

α̂ =
ε̂2

ε̂2 + γ̂′
with γ̂′ = 1 + 2 log â.

C(K) is defined by

C(K) = ln sup
x,y,x′,y′

K(x, y)K(x′, y′)
K(x′, y)K(x, y′)

Proof. By the triangle inequality,

sup
t≥0

E(|
∫

fdπ̂N
t −

∫

fdπt| |Y0:t) ≤

sup
t≥0

E(|
∫

fdπ̂N
t −

∫

fdπ̂t| |Y0:t) +

sup
t≥0

E(|
∫

fdπ̂t −
∫

fdπt| |Y0:t), (6)

where π̂t is defined by

π̂t+1 =
ĜYt F̂tπ̂t

(ĜYt F̂tπ̂t)(X )
.

By Theorem 3.1 of (Del Moral, 1998) the first term
of the right hand side of (6) can be bounded by
5 exp(2γ̂′)

N α̂/2 .

By means of some contraction arguments and the
well known properties of h (G.Birkhoff, 1967) it
can be proven that

h(π̂t, πt) ≤
2β

1− tanh(C(K)/4)

Since, by the well known inequality (see (G.Birkhoff,
1967))

‖π̂t − πt‖TV ≤ 2
log 3

h(π̂t, πt)

and since ‖π̂t − πt‖1 ≤ ‖π̂t − πt‖TV , we arrive at
∣

∣

∣

∫

fdπ̂t −
∫

fdπt

∣

∣

∣ ≤ ‖f‖∞ ‖π̂t − πt‖1 ≤

4β‖f‖∞
log(3)(1− tanh(C(K)/4))

.

Taking expectation of both sides and combining
this inequality with that of derived above for the
first term of (6) yields the result.

4. SIMULATION RESULTS

In this section we compare the performance of LS-
N-IPS and N-IPS in a simulated scenario. The
dynamics we consider is as follows:

X̂t+1 = Xt + St+1∆t + Wt

St+1 = (2Bt+1 − 1)St

Ut+1 = χ(|X̂t+1| ≤ K)

Xt+1 = Ut+1X̂t+1 + (1− Ut+1)Xt

∆t+1 = Ut+1(Xt+1 −Xt) +

(1− Ut+1)(Xt+1 − X̂t+1),

where Wt ∼ N (0, σ) are i.i.d. Gaussian random
variables, and Bt is a Bernoulli variable with
parameter α. The dynamics can be thought to
model a “bouncing ball”(with no mass), where
the ball is bounced at the points −K, +K and
at random time instances when Bt = 0.

The observation is Yt = Xt + Vt where Vt ∼
N (0, δ) i.i.d. The dynamics is highly non-linear, so
linear filters would be useless. In the experiments
we used α = 0.99 (low probability of bounce), and
σ = 10δ (uncertainity of dynamics is higher than
that of the observation), δ = 0.5,K = 250.

We tested both N-IPS and LS-N-IPS on this prob-
lem. Since we are interested in the performance
when the number of particles is small we used
N = 10. Time to time, both N-IPS and LS-N-IPS
loose the object, i.e., Dt = | 1

N

∑

i X(i)
n −Xn)| > θ

(we used θ = 25). In order to make a quantita-
tive comparison we ran 104 simulations of length
t = 400 each and for each T ∈ {1, 2, . . . , 400}
estimated the probability of loosing the object
at time T for the first time. Results are shown
in Figure 1. It should be clear from the figure
that LS-N-IPS performs much better than N-IPS.
The SEARCH-ONLY algorithm, also shown in the
picture, is an LS-N-IPS algorithm with “zero” dy-
namics, i.e. Ẑ(i)

t+1 = Sλ(X(i)
t , Yt+1). This algorithm

performs much worse than either of the two other
ones, underlining the importance of the role of the
dynamics in particle filtering.

Figure 2 shows the tracking precision of the same
algorithms as a function of the time. More pre-
cisely, the figure shows the estimates of E[Dt|Dt ≤
θ] as a function of t, as estimated by computing
the averages over the 104 runs. The ordering of the
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Fig. 1. Probability of loosing the object as a func-
tion of time.
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Fig. 2. Tracking precision as a function of time.

algorithms is the same as for the previous mea-
surements: LS-N-IPS still performs significantly
better than the other two algorithms.

5. RESULTS IN VISUAL TRACKING

The proposed algorithm was tested in a vision
based tracking problem. Results are presented in
the form of typical image sequences.

Figure 3 shows a typical image sequence of track-
ing a hand in clutter. The number of particles
was chosen to be 100. This allows a tracking
speed of 7 frame/seconds on a Pentium III 533
MHz computer without any further optimizations.
Note that the speed of the algorithm is inde-
pendent of the size of the image since the low
level image processing involves only local com-
putations. The local search procedure was imple-
mented as a combination of greedy search and an
LMS algorithm. For more details see (Torma and
Szepesvári, 2000). Occasionally, the tracker looses
the object, but it recovers soon in all cases. (The
tracker quickly finds the object even when the ini-
tial position is randomized.) The image sequence
is recorded with a frame rate of 30 frames/second.

Fig. 3. Tracking hand in clutter with 100 particles.
Black contours show particles having high ob-
servation likelihoods, whilst the white contour
shows the actual estimate of the hand.

The picture shows every 15th frame. N-IPS was
unable to achieve a similar tracking performance
even when the number of particles was increased
above 1000 in which case the tracking speed be-
came unacceptable.

6. RELATED WORK

LS-N-IPS can be thought of as a variance reduc-
tion technique. In the literature, many variance
reduction techniques have been developed, here
we mention only two of them.

The first method is Sequential Importance Sam-
pling with Resampling (SIR) (Doucet, 1998). The
design parameter of this method is the so-called
“proposal distribution” used to generate the pre-
dictions of the particle positions. This should
be designed such that the overall variance is re-
duced. Typically, sampling from the proposal is
accomplished by a general purpose, randomized
sampling procedure (e.g. MCMC), requiring the
evaluation of the observation density at many



points. Further, the running times of these sam-
pling procedures are random - a disadvantage in
tasks where guaranteed, real-time performance is
required.

Another method, meant to avoid the problems of
SIR, is the auxiliary variable method (AVM) by
Pitt and Shephard (Pitt and Shephard, 1999). Un-
fortunately, this method requires the calculation
of O(R + N) observation likelihoods, where R, a
design parameter of the method, should typically
be chosen to be much larger than N .

Both SIR (with a carefully designed proposal dis-
tribution) and AVM were tested in the simulated
scenario and were found to perform significantly
worse than LS-N-IPS. Results of these experi-
ments are not reported here due to the lack of
space.

7. CONCLUSIONS

In this article a modification of the N-IPS algo-
rithm was proposed. The modified algorithm is
applicable when a local search operation maxi-
mizing the observation density function can be
implemented. The algorithm was claimed to per-
form better for small values of N than N-IPS and
when the observation model is reliable. A theo-
rem proving the uniform stability of the proposed
algorithm was given. Experiments confirmed that
the proposed modification does improve over the
quality of N-IPS. Given equivalent running times,
the new algorithm comes with an increased pre-
cision, and given equivalent precisions, the new
algorithm has a shorter running time than that of
N-IPS.

Future work will include the application of the
new algorithm in a number of other practical
cases, such as speech processing and control, as
well as a more thourough theoretical analysis with
a focus on weakening the undesirably strong pos-
itivity assumptions of the proven stability theo-
rem.

8. REFERENCES

Del Moral, Pierre (1998). A uniform convergence
theorem for the numerical solving of the non-
linear filtering problem. Journal of Applied
Probability 35, 873–884.

Doucet, Arnaud (1998). On sequential simulation
based methods for Bayesian filtering. Statis-
tics and Computing 10(3), 197–208.

G.Birkhoff (1967). Lattice Theory. Am. Math.
Soc.

Isard, Michael and Andrew Blake (1998). CON-
DENSATION – conditional density propaga-
tion for visual tracking. International Journal
Computer Vision 29, 5–28.

Pitt, Michael K. and Neil Shephard (1999). Fil-
tering via simulation: Auxiliary particle filter.
Journal of the American Statistical Associa-
tion 94, 590–9.
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