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Computer and Automation Research Institute

of the Hungarian Academy of Sciences,
Kende u. 13-17, 1111 Budapest, Hungary

szcsaba@sztaki.hu

Abstract

An unsatisfactory property of particle filters is that they
may become inefficient when the observation noise is low.
In this paper we consider a simple-to-implement particle fil-
ter, called ‘LIS-based particle filter’, whose aim is to over-
come the above mentioned weakness. LIS-based particle
filters sample the particles in a two-stage process that uses
information of the most recent observation, too. Experi-
ments with the standard bearings-only tracking problem in-
dicate that the proposed new particle filter method is indeed
a viable alternative to other methods.

1 Introduction

In this paper we consider filtering of non-linear stochas-
tic processes. The problem studied can be formalized as
follows. A sequence of values Y0, Y1, Y2, . . . of some Eu-
clidean space, governed by the equations

Xt+1 = a(Xt; ξt+1), X0 ∼ p0(·), (1)
Yt+1 = b(Xt+1; ηt+1), t = 0, 1, . . . (2)

is observed. Here Xt is the state of the system at time step
t, p0 is the initial distribution over the possible states at time
step zero, and ξt, ηt are the process and observation noise
processes; they are assumed to be composed of indepen-
dent, identically distributed random variables and also to be
independent of each other. The goal is to determine the pos-
terior, πt(x) = p(Xt = x|Y1, . . . , Yt), over the states at any
time-step.

Three major factors can be identified that influence the
performance of filtering algorithms: (i) the energy of the
process noise; (ii) the energy of the observation noise; and
(iii) the severity of ‘perceptual aliasing’ that makes the re-
covery of the state from the sequence of observations hard
in the ‘zero noise’ limit.

Particle filters (see e.g. [?, ?, ?] and the references
therein) approximate the posterior by empirical measures

of the form

πt(x) =
∑N

k=1 w
(k)
t δ(x−X

(k)
t )

∑N
k=1 w

(k)
t

,

where X
(k)
t and w

(k)
t represent the kth particle’s position

and weight, respectively, and δ(·) is Dirac’s delta function.
Here X

(k)
t and w

(k)
t are (random) quantities that depend

on the sequence of past observations Y1:t
def= (Y1, . . . , Yt).

Given the empirical measure the estimate of the expectation
of an arbitrary function h with respect to the posterior is
obtained by

It,N (h) =
∑N

k=1 w
(k)
t h(X(k)

t )
∑N

k=1 w
(k)
t

. (3)

The generic particle filter works by updating the parti-
cle’s positions and weights in a recursive manner. The up-
date is composed of two steps: computation of the parti-
cle’s new positions is done by sampling from the so-called
proposal function, followed by the update of the weights
and an optional resampling step [?]. In the SIR filter [?]
the particle’s positions are updated independently of each
other by sampling the kth particle’s new position using
a(X(k)

t ; ξ(k)
t ), where ξ

(k)
t is sampled from the common un-

derlying distribution of the process noise variables ξt, whilst
the weight of the kth particle is computed by evaluating the
observation likelihood p(Yt|X(k)

t+1).
When the level of the observation noise is low, the obser-

vation likelihood function becomes ‘peaky’ or concentrated
around its modes (the modes correspond to the states that
are locally most likely to ‘cause’ the most recent observa-
tion). If the position of a particle is not sufficiently close to
one of these modes then the particle’s weight will become
small and thus the particle will bring in little information
into the estimate of the posterior. If this happens for most
of the particles then the quality of the approximation to the
posterior degrade seriously. We call this problem the “curse
of reliable observations”.

The curse of reliable observations is a well-known pe-
culiarity of particle filters. The general advise to remedy



this problem is to use a proposal that depends on the most
recent observation [?]. However, finding a proposal that is
both tractable and still yields good performance can be no-
toriously hard. A straightforward alternative is to increase
the number of particles until it is ensured that many particles
are close to the peaks of the observation likelihood function.
In high dimensional state-spaces this approach may require
an enormous number of particles, which in turn slows down
the filtering process. Hence methods that make it possible
to keep the number of particles low are of considerable in-
terest.

Since the inefficiency stems from the particles’ positions
not being close enough to the modes of the observation like-
lihood, it is a natural idea to let the modes of the likelihood
‘attract’ the particles. In this paper we consider algorithms
that subscribe to this idea. The algorithms considered in
this paper generate the particles’ positions in a two-stage
sampling process, where the first step uses the prior states,
whilst the second uses the most recent observation.

In this paper we consider two methods, the first method,
the local likelihood sampling (LLS) based particle filter in-
troduced in [?], is used to motivate the second. In the LLS-
filter the first sampling step is the same as in SIR, whilst in
the second step of the LLS-filter a localized version of the
observation likelihood function is used to adjust the parti-
cles’ positions. Weights are calculated so that the process
remains (locally) unbiased. In the case of the second al-
gorithm proposed here, the first sampling step remains the
same, whilst in the second step the observation likelihood
is replaced by a user-chosen proposal density function that
should be designed to be ‘close’ to the likelihood. The
weight update equations are modified so that unbiasedness
is retained. We call this second algorithm the local impor-
tance sampling based particle filter. A particular variant that
employs mixture of Gaussian proposals is studied in greater
detail. Experimental results with the standard bearings only
tracking problem indicate the superiority of the proposed
method to some of its alternatives.

2 Notation

Let us denote the transition kernel corresponding to the
dynamics a (cf. (1)) by K = K(u|v), i.e.,

∫
U K(u|v) du =

P (a(v, ξt) ∈ U), where U is any measurable subset of the
state-space. Further, let us denote the observation likelihood
density by r = r(y|x), i.e.,

∫
Y r(y|x) dy = P (b(x, ηt) ∈

Y), where Y is any measurable subset of the observation
space.

3 Algorithms

3.1 LLS-filters

The basic idea of LLS-based particle filters [?], is to
draw a sample from the prediction density as in SIR, but
then allow the observation density to ‘perturb’ the position

of the particles. A window-function (g) is used to local-
ize the observation density’s effect on the sample, hence the
name of the procedure. The role of localization is to prevent
particles ‘jump around’ in the state-space, i.e. to keep the
information in the previous estimate of the posterior. The
procedure is shown in Figure 1.

Initialize {(Z(k)
0 , 1/N)}N

k=1 from the prior p0(·).
For t = 1, 2, . . .

For k = 1, 2, . . . , N

Resample St−1 = {(Z(j)
t−1, w

(j)
t−1)}N

j=1 to obtain

a new sample (Z(k)
t−1

′
, 1/N)

Predict X
(k)
t by drawing a sample from K(·|Zk

t−1
′)

Perturb X
(k)
t by drawing Z

(k)
t from

1

α
(k)
t

r(Yt|·)g(X(k)
t − ·), where

α
(k)
t =

∫
r(Yt|x)g(X(k)

t − x) dx .

Update weight w
(k)
t using

ŵ
(k)
t = α

(k)
t

K(Z(k)
t |Z(k)

t−1

′
)

K(X(k)
t |Z(k)

t−1

′
)

.

EndFor
Normalize weights using w

(k)
t = ŵ

(k)
t /

∑N
j=1 ŵ

(j)
t .

EndFor

Figure 1. LLS-based Particle Filter

The following proposition was shown to hold in [?]:

Proposition 1 Let (Xt, Yt) evolve according to Equa-
tions (1)-(2). Assume that g is a non-negative, integrable
function satisfying I(g) = 1. Let {(w(k)

t , Z
(k)
t )} be the par-

ticle step obtained at time step t of the LLS-based particle
filter. Then

E[w(k)
t h(Z(k)

t )|Y1:t] = E[h(Xt)|Y1:t]p(Yt|Y1:t−1).

In words, the statement of the proposition means that the
weighted sample obtained at time step t represents the pos-
terior properly, up to a constant factor (dependent only
on the observations). As a consequence of the proposi-
tion, we get that E[h(Xt)|Y1:t] can be approximated us-
ing weighted averages of the form (3) and convergence re-
sults (almost sure convergence, convergence in distribution,
mean-square, finite sample performance bounds) can be de-
rived along the lines of previous proofs (see [?] and refer-
ences therein).

What is more interesting is that in [?] a result was proven
where it was shown that the LLS-filter can be more efficient
than SIR (see Proposition 2, [?]) provided that the cross-
correlation between the observation density and the obser-
vation density multiplied by the prediction density is much



larger than the cross-correlation between the convolution of
the window function and the observation density, and the
convolution of the window function and the product of the
observation and prediction densities. Dropping condition-
ing on past observations and time indexes, let us denote by
f the observation density, and by p the prediction density.
Then the condition for improved performance has the form
ε ≤ 〈f, fp〉 − 〈f ∗ g, (fp) ∗ g〉. Here ε is a constant that
depends on p and g (we omit the definition of ε due to the
lack of space; the interested reader can find it in [?]) and
u ∗ v denotes the convolution of u and v. Since for typi-
cal choices of the window function convolution with it cuts
high frequencies, the condition can be expected to hold for a
wide class of problems, especially when the prediction den-
sity, p, is ‘broad’ as compared to the observation density,
f .

Note that the algorithm can be generalized easily to use
window functions that change depending on X

(k)
t . One just

needs to replace g(X(k)
t − x) in the sample-perturbation

step by g(X(k)
t − x;X(k)

t ) and redefine α
(k)
t accordingly:

α
(k)
t =

∫
p(Yt|x)g(X(k)

t − x; X(k)
t ) dx. The simplest ap-

plication of this is to fit g to match the energy distribution of
the observation noise. Similarly g can be made dependent
on the observation Yt.

3.2 Local Importance Sampling

One problem with LLS-filters is that they depend on
whether sampling sampling from r(Yt|·)g(X(k)

t − ·)/α
(k)
t

can be implemented efficiently. One possible remedy for
this problem is to introduce a proposal density to replace
r(Yt|·). The corresponding algorithm, called Local Impor-
tance Sampling, is given in Figure 2.

The following proposition can be shown to hold (the
proof is omitted due to the lack of space):

Proposition 2 Let (Xt, Yt) evolve according to Equa-
tions (1)-(2). Assume that g is a non-negative, inte-
grable function satisfying I(g) = 1 and let qx,y(·) >
0 be a bounded, integrable function for all x, y. Let
{(w(k)

t , Z
(k)
t )} be the particle set obtained at time step t

of the LIS-based particle filter. Then

E[w(k)
t h(Z(k)

t )|Y1:t] = E[h(Xt)|Y1:t]p(Yt|Y1:t−1).

As a consequence of this result, the LIS-based particle fil-
ter enjoys similar theoretical properties as SIR. Building on
the previous argument that shows that LLS is more efficient
than the naive algorithm, one expects that under similar con-
ditions LIS will also be more efficient provided that the pro-
posal function qx,y fits r(y|·) around x for any x, y. The
efficiency of the new algorithm will be demonstrated in the
next section on the standard bearings-only tracking prob-
lem in the next section. However, first let us consider an
important practical variant of this algorithm.

Initialize a sample set {(Z(k)
0 , 1/N)}N

k=1 according to
the prior p0(·).
For t = 1, 2, . . .

For k = 1, 2, . . . , N

Resample St−1 = {(Z(j)
t−1, w

(j)
t−1)}N

j=1

to obtain a new sample (Z(k)
t−1

′
, 1/N)

Predict X
(k)
t by drawing a sample from K(·|Zk

t−1
′)

Perturb X
(k)
t by drawing Z

(k)
t from

1

α
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t

q
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∫
q
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t ,Yt
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t − x) dx .

Update weight w
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t using
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q
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′
)

.

EndFor
Normalize weights using w

(k)
t = ŵ

(k)
t /

∑N
j=1 ŵ

(j)
t

EndFor

Figure 2. LIS-based Particle Filter

3.3 Using Gaussian Mixture Proposal in LIS-
based particle filters

A particularly attractive, easy to implement LIS-based
particle filter is obtained when the proposal function is cho-
sen to be a mixture of Gaussians and the window function
is chosen to be a Gaussian, too. The purpose of this section
is to give the details of the resulting procedure.

Let u denote the state-observation pair (x, y) and choose
qx,y = qu to be a mixture of Gaussians with n components,
having priors p1, . . . , pn, means mu,1, . . . ,mu,n and vari-
ances σ2

u,1, . . . , σ
2
u,n. Further, choose the window function

to be a zero-mean Gaussian with variance σ2
g . Mixture of

Gaussians are attractive due to their universal approxima-
tion properties for continuous densities [?, ?] and also due
to their analytic tractability which we build heavily on here:

For implementing the LIS-based particle filter, one needs
to be able to draw samples from qu(·)g(x − ·), as well as
to evaluate (qu ∗ g)(x). In our case, as it is well known,
qu(·)g(x− ·) is a mixture of Gaussians with means

mu,i =
xσ2

u,i + mu,iσ
2
g

σ2
g + σ2

u,i

, (4)

variances and

σu,i =
σgσu,i√
σ2

g + σ2
u,i

(5)



and (un-normalized) weights:

Lu,i =
pi√

2π(σ2
g + σ2

u,i)
e
− 1

2
(x−mu,i)

2

(σ2
u,i

+σ2
g) . (6)

Hence, sampling from qu(·)g(x − ·) can be implemented
by first drawing an index from the normalized weights
(Lu,1/Lu, . . . , Lu,n/Lu), where Lu =

∑n
i=1 Lu,i, and

then drawing a sample from the appropriate Gaussian. Fur-
ther, (qu ∗ g)(x) is just equal to Lu.

Hence, LIS-based particle filters are particularly easy to
implement when used with mixture of Gaussian proposals
and a Gaussian window function. The calculations are fur-
ther elaborated on in Figure 3 for a single particle and a sin-
gle time-step, assuming that the prediction density is p and
the observation density is f (time indexes and conditioning
on previous samples/observations are dropped). Before pre-

Inputs: prediction density (p), observation density (f ),
observation (Y )

• Draw the jth particle Xj from p

• Calculate the Gauss-Mixture parameters (mXj ,Y,i,
σXj ,Y,i, LXj ,Y,i) using Equations (4)–(6).

• Draw an index k from
{

LXj,Y,i

LXj,Y

}n

i=1

• Draw Zj a Gaussian with mean mXj ,Y,k and vari-
ance σXj ,Y,k.

• Calculate the weight

wj =

(
n∑

i=1

LXj ,Y,i

)
f(Zj)

qXj ,Y (Zj)
p(Zj)
p(Xj)

.

Figure 3. Local Importance Sampling with
mixture-of-Gaussian proposals and Gaussian
window function

senting our experimental results we discuss some relevant
related algorithms. In the experiments we will compare the
performance of the proposed new method to that of one of
these algorithms (AVM).

4 Related Work

Due to space restrictions, we give only a few key refer-
ences.

One of the best known particle filter whose aim
is to overcome the curse of reliability is the Aux-
iliary Variable Method (AVM) introduced by Pitt
and Shephard [?]. AVM uses a proposal den-
sity of the form q(xt|X(1)

t−1, . . . , X
(1)
t−1, Yt) =

∑N
k=1 r(Yt|X(k)

t )K(xt|X(k)
t−1), where X

(k)

t is
e.g. the expected next state for particle k (i.e.

X
(k)

t = E[a(X(k)
t−1, ξt)|X(k)

t−1]). Sampling is imple-
mented by first doing a weighted resampling step using the
weights r(Yt|X(k)

t ) and then drawing the next states using
the transition density kernel K. AVM can be more efficient
than SIR when the process noise variance is low and the
observation likelihood is not too peaky. AVM is similar
to LLS/LIS-filters in that it is also a two-stage scheme.
However, in AVM the particles’ position is still sampled
from the prediction density, whilst in LLS/LIS-filters the
observation directly influences the particles’s positions.
One issue with AVMs is that when the observation like-
lihood is peaky and the number of particles is not high
enough then resampling the particle set using {r(Yt|X(k)

t )}
might not be successful at picking ‘right’ particles. A
similar problem occurs when the prediction density is
multi-modal (though in such a case Xt could be replaced
by random samples from the prediction density). Also,
when the prediction density has a large variance then even
if the first stage is successful, sampling the particle’s next
state from K might yield to a set of particles that are spread
out too much in the state-space. The advantage of AVM to
LIS-filters is that in LIS-filters the user has to design the
proposals, though this choice can be made automatic by
employing standard density estimation procedures.

Another recent method is likelihood sampling consid-
ered e.g. in details in [?]. In this approach it is the likelihood
function p(Yt|·) that is used as the proposal, whilst the pre-
diction density is used to calculate the weights. Thus the
success of this method depends on whether the likelihood
is a good predictor of the true state. For multi-modal likeli-
hoods (when aliasing effects are severe) a large number of
particles can be generated away from the likely next posi-
tions of the true state. These particles will get low weights
in the weighting process and thus will have no significant ef-
fect on the estimated posterior. Hence the effective sample-
size would be small in this case. Our method overcomes
this problem by first sampling from the prediction density
and hence concentrating the samples in the vicinity of the
‘correct’ peaks of the likelihood function and using a local-
ized version of the likelihood.

The LS-N-IPS algorithm, introduced in [?], uses the
prediction density to derive the new particle set which is
then locally modified by climbing the observation like-
lihood. This algorithm introduces some bias and relies
on the availability of a method to climb the observation
likelihood. Although, according to the well-known bias-
variance dilemma, introducing bias is not necessarily ‘bad’,
LLS/LIS-filters may achieve roughly the same variance re-
duction that is possible to get using LS-N-IPS, but with no
additional bias (weighted importance sampling itself yields
biased estimate of the posterior). Further, LLS/LIS-filters
do not require a hill-climbing algorithm.

Yet another recent method is the “Boosted Particle Fil-
ter” [?]. Using our notation, this method uses the following



proposal:

q(·|Xt−1, Yt) = α(Xt, Yt) r(Yt|·)g(Xt − ·)
+

(
1− α(Xt, Yt)

)
K(·|Xt−1),

where Xt is the expected next state given the current state
Xt−1 and

α(x, y) =

{
A, if r0 < maxx′:d(x′,x)≤λ r(y|x′);
B, otherwise.

Here 0 < B ¿ A < 1, and r0, λ are parameters to be
chosen by the user. Hence, when the observation likeli-
hood is sufficiently large in a neighborhood of the expected
next state then the observation likelihood is used to draw
the next sample; whilst if the observation likelihood is not
sufficiently large then the prediction density is used to draw
the next position. Note that the version of this algorithm
presented in [?] uses heuristically derived approximations
to the observation likelihood and it is slightly more compli-
cated than the one presented here. In any case, the above
proposal depends on the most recent observation and draw-
ing samples from it can be done in an efficient manner.
However, just like in the case of AVM, when the prediction
density is multi-modal or when the prediction density has
a large variance then since the expected value of the next
state is a bad predictor of where the next state might be, the
algorithm degrades to SIR.

5 Experiments

In this section we compare the performance of the LIS-
filter to that of SIR and AVM on the standard ‘bearings-
only tracking’ problem that has been considered previously
by several authors [?, ?, ?, ?]. In this problem the aim is to
track the (horizontal) motion of a ship, while observing only
angles to it. Without the loss of generality,let us assume that
the coordinate system is fixed to the observer. The ship’s
state is assumed to follow a second order AR process, with
its acceleration driven by white noise:

Xt+1 =




1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1


 Xt + ση




1
2 0
1 0
0 1

2
0 1


 ξt,

where Xt, ξt ∈ R2, ξt1, ξt2 ∼ N (0, 1), and Xt1, Xt3 rep-
resent the ship’s vertical and horizontal positions, respec-
tively, whilst Xt2, Xt4 represent the ship’s vertical and hor-
izontal velocities. The initial state is sampled from a 4-
dimensional Gaussian with a diagonal covariance matrix.

What makes this problem particularly challenging is that
the observations depend on the state only through the an-
gle, θt = tan−1(Xt3/Xt1), at which the ship is observed.
The observation noise is defined using a wrapped Cauchy
density:

r(y|θt) =
1
2π

1− ρ2

1 + ρ2 − 2ρ cos(y − θt)
.

This density (when ρ is close to one) is thought to reflect
well a sonar’s behaviour: angle measurements are typically
very reliable, whilst possible outliers are well modelled by
the heavy tails of the wrapped Cauchy distribution.

The parameters of the model used in the experiments
are as follows: ση = 0.001, ρ = 1 − 0.0052, and
the initial state is sampled from a Gaussian with means
(−0.05, 0.001, 0.2,−0.055) and with a diagonal covari-
ance matrix with diagonal entries given by 0.001 ×
(0.52, 0.0052, 0.32, 0.012). Figure ?? gives an example of
the ship’s motion and the observed angles.

−0.08 −0.07 −0.06 −0.05 −0.04 −0.03 −0.02 −0.01 0

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

Figure 4. An example of the ship’s motion to-
gether with the observation directions.

5.1 Results

The performance of the LIS-based particle filter was
compared to that of AVM and SIR. All particle filters in
these experiments use N = 300 particles.

For the implementation of the LIS-based particle filter
the importance function qx,y is best described using polar
coordinates: Basically, qx,y is a Gaussian in the angle coor-
dinates with variance δ2

x,y = 1− ρ. The window function g
is defined in the angular space with dispersion δg = 0.05.

Figure ?? shows particle clouds generated by the three
algorithms for an arbitrary selected time-step. It should be
clear from the figure that the particle set generated by LIS
(shown as dots on the figure) is much better concentrated
around the true state than the sets generated by both AVM
(’+’) and SIR (’×’). In particular, the particles are more
concentrated along the lines pointing towards the true state.
Also, the particle sets generated by AVM are more concen-
trated around the true state than those generated by SIR. We
note that a straightforwardly implemented likelihood sam-
pling algorithm would perform much weaker than any of
these algorithms as it would have no clue about the dis-
tance of the ship, and thus it would need to distribute sam-
ples evenly along the measurement lines. In order to get a
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Figure 5. Particle clouds generated by AVM
(’+’), SIR (’×’) and LIS (’·’) for the bearings
only tracking problem.

more precise picture of the performance of these algorithms,
we have measured the tracking performance by computing
the Euclidean distance between the predicted and the ac-
tual ship positions as a function of time. The errors were
measured with 20 independently generated tracking (mea-
surement) sequences, and by running each algorithms 100
times on each of the 20 measurement sequences. Figure ??
shows the resulting tracking error of SIR, AVM and LIS as
a function of the number of time steps. As expected, AVM
performs better than baseline SIR, but LIS improves upon
the performance of both SIR and AVM by a considerable
margin. The observed performance differences were found
to be significant.
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Figure 6. Tracking errors of SIR, AVM and LIS
as a function of time

6 Conclusions

We have proposed a family of algorithms to enhance
particle filters with the aim to overcome the ‘curse of reli-
able observations’. The proposed algorithms, the LLS/LIS-
filters of which LIS-filters were introduced here, are mod-
ifications of the standard SIR algorithm whereas after the
prediction step the position of the particles are randomly
re-sampled from a localized version of the observation den-
sity or a localized importance function. We argued that us-
ing the new method higher effective sample sizes can be
achieved when the observations are reliable and when the
design parameters of the new algorithm are chosen appro-
priately. One expects this increase to be reflected by an im-
proved tracking performance. Experiments with the stan-
dard bearings-only tracking problem indicate that the pro-
posed algorithm is indeed capable of improving the tracking
performance as compared with the performance of SIR and
AVM.
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[12] P. Torma and C. Szepesvári. LS-N-IPS: an improvement of
particle filters by means of local search. Proc. Non-Linear
Control Systems(NOLCOS’01) St. Petersburg, Russia, 2001.
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