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Abstract. Particle filters provide a means to track the state of an ob-
ject even when the dynamics and the observations are non-linear/non-
Gaussian. However, they can be very inefficient when the observation
noise is low as compared to the system noise, as it is often the case in
visual tracking applications. In this paper we propose a new two-stage
sampling procedure to boost the performance of particle filters under
this condition. We provide conditions under which the new procedure is
proven to reduce the variance of the weights. Synthetic and real-world
visual tracking experiments are used to confirm the validity of the theo-
retical analysis.

1 Introduction

In this paper we consider particle filters in the special case when the observation
noise is low as compared to the noise in the system’s dynamics (for brevity we
call the latter noise the ‘system noise’). This is a typical situation in computer
vision where the discrimination power of the object model is typically high. Such
models may e.g. use shape, contour, colour, intensity information or a combina-
tion of these and give rise to a highly peaked, low entropy observation likelihood
function. Highly discriminative observation likelihoods are very desirable as they
results in highly peaked posteriors and hence, in theory, the position of the object
can then be estimated with high precision.

In practice the posterior cannot be obtained in a closed form, except in a few
special cases. Thus in general one must revert to some approximate method to
estimate the posterior. Particle filters represent a rich class of such approximate
methods. They represent the posterior using a weighted particle set living in
the state space of the process. Upon the receipt of a new observation the generic
particle filter algorithm updates the position of the particles and recomputes the
weights so that the new weighted sample becomes a good representation of the
new posterior that takes into account the new observation, as well. The position
of the particles are typically updated independently of each other by drawing
them from a user-chosen proposal distribution. If the new particles are not in the
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close vicinity of the modes of the likelihood function and the likelihood function
is highly peaked then the representation of the posterior will degrade very fast.
The peakier the observation likelihood function the more important is to sample
the particles such that they will be close to the modes.

This paper introduces a method that draws the new positions of the particles
using a two-stage sampling process that depends on the likelihood function and
hence one expects the new method to have superior performance than that of
those algorithms that do not use the likelihood function. At the core of the new
filter is sampling method that is applicable when the density to sample from
has a product form, with one of the terms being highly peaked, whilst the other
having heavy tails. Under this conditions the new sampling method represents
an alternative to importance sampling. The new method works by first drawing
a particle from the broader density. In the second step this particle is perturbed
such that on average it moves closer to one of the modes of the peaky term.
Weights are calculated so that unbiasedness of the new sample is guaranteed.
We compare the expected performance of the proposed scheme by means of a
theoretical analysis to that of the basic importance sampling scheme and derive
conditions under which the new scheme can be expected to perform better. The
comparison is extended to the particle filtering setting, as well. The theoretical
findings are confirmed in some computer experiments. In particular, the method
is applied to the tracking of Japanese license plates where the new algorithm is
shown to improve performance substantially both in terms of tracking accuracy
and speed.

1.1 Related Work

The efficiency problem associated with low observation noise is well known in
the literature and hence many approaches exist to resolving it. Among the many
methods the Auxiliary variable Sampling Importance Resampling (ASIR) filter
introduced by Pitt and Shephard [1] is one of the closest to our algorithm. ASIR
approximates the proposal density using a mixture of the form

∑N
k=1 βkγk(·)

where weight βk approximates the normalized likelihood of the new observation
(Yt) assuming that the state of the process at the t − 1th time step is X

(k)
t−1.

The function γk(·) approximates the density p(xt|X(k)
t−1, Y1, . . . , Yt).3 The biggest

obstacle in applying ASIR is to obtain a good approximation of the conditional
likelihood of the new observation given X

(k)
t−1, since this involves the evaluation

of a potentially high dimensional integral and the efficiency of ASIR ultimately
depends on the quality of this approximation. It turns out that except for some
special cases it is not easy to come up with a sampling scheme that could sample
from p(xt|X(k)

t−1, Y1, . . . , Yt) ∝ p(Yt|xt)p(xt|X(k)
t−1) in an efficient manner. This

issue is the problem we are addressing in this paper.
Another recent proposal is called ‘likelihood sampling’ (see e.g. [2]). In this

approach it is the likelihood function p(Yt|·) that is used to generate the samples
from and the prediction density is used to calculate the weights. The success

3 Here and in what follows random variables are denoted by big capitals.
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of this method depends on the amount of ‘state aliasing’ that comes from the
limitations of the observation model. For multi-modal observation likelihoods a
large number of particles can be generated that will have low weights when the
posterior already concentrates on a small part of the state space. Our method
overcomes this problem by first sampling from the prediction density. As a result,
our method can suffer from inefficiency if the estimates posterior is considerably
off from the target so we expect our method being competitive only when this
is not the case.

Perhaps the most relevant to this work is the LS-N-IPS algorithm introduced
in [3]. In LS-N-IPS the prediction density is used to derive the new particle set
which is then locally modified by climbing the observation likelihood. Hence
this algorithm introduces some bias and also needs an efficient method to climb
the observation likelihood. The method proposed here resolves the inefficiency
problem without introducing any additional bias or requiring a hill-climbing
method.

2 Notation

The following notations will be used: for an integrable function f , I(f) will
denote the integral of f with respect to the Lebesgue measure.4 Rd denotes the
d-dimensional Euclidean space. Lp (0 < p ≤ +∞) denotes the set of functions
with finite p-norm. The p-norm of a function is denoted by ‖f‖p. For a function
f ∈ Ls(Rd), s ∈ {1, 2}, f̂ denotes its Fourier transform: f̂(ω) =

∫
e−iωT xf(x)dx .

The inner product defined over L2(Rd) is defined by 〈f, g〉 =
∫

f(x)g(x)dx ,
where a denotes the complex conjugate of a. Convolution is denoted by ∗: (f ∗
g)(x) =

∫
f(y)g(x− y)dy . Expectation is denoted by E and variance by Var, as

usual.

3 Random representation of functional products

Our main interest is to generate random samples that can be used to represent
products with two terms f, p, where f is an integrable function (f plays the role
of the observation likelihood) and p is a density (the prediction density). We
begin with the definition of what we mean by a properly weighted set w.r.t. f
and p. This definition is a slightly modified version of the definition given in [4]:

Definition 1 A random variable X is said to be properly weighted by the func-
tion w with respect to the density p and the integrable function f if for any
integrable function h, E[h(X)w(X)] =

∫
h(x)f(x)p(x) dx . Also, in this case

(X, w(X)) is said to form a properly weighted pair with respect to f, p.
A set of random draws and weight functions {(Xj , wj)}j=1,...,N is said to

be properly weighted with respect to p and f if all components of the set are
properly weighted with respect to p and f .

4 The underlying domain of the functions is not important at this point. It could be
any Polish set, e.g. an Euclidean space.
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It should be clear that if {(Xj , wj)}j=1,...,N is a properly weighted set with
respect to p and f then, by the law of large numbers, the sample averages
JN (h,w) = (1/N)

∑N
j=1 h(Xj)w(Xj) will converge to I(hfp) under fairly mild

conditions. Hence, in this sense, a properly weighted set with respect to f and
p can thought of as representing the product density f(·)p(·).

Let us now consider two constructions for properly weighted sets. It is clear
from the definition that it is sufficient to deal with the case of a single random
variable.

The most obvious way to obtain a properly weighted pair is to sample X from
p and define w = f . Then, trivially E[h(X)w(X)] = E[h(X)f(X)] = I(hfp).
We shall call this the canonical or basic sampling scheme.

A central question of Monte-Carlo sampling is how to obtain a properly
weighted set such that the variance of the estimate of I(hfp) provided by the
sample average JN (h, w) is minimized. Actually, we are more interested in study-

ing the weight-normalized averages IN (h,w) =
∑N

j=1 h(Xj)w(Xj)∑N
j=1 w(Xj)

that converge to

the normalized value I(hfp)/I(fp) as N → ∞ with probability one, under a
broad range of conditions on (Xj , wj). Obviously, the optimal sampling con-
struction depends on h. Since we are interested in the case when h is not fixed,
it is sensible to use the “rule of thumb” presented in Liu [5] (based on [6])
to measure the efficiency of a sampling construction by a quantity inversely
proportional to the variance of w(X), where w is such that E[w(X)] = 1. By
straightforward calculations one can show that Liu’s measure still applies to our
case, because E[w(X)] = I(fp) ≡ const, independently of the choice of X and
w. We make this rule as our starting point and will compare different sampling
schemes by the variance of the weights. Now, since for any properly weighted
pair (X, w), E[w(X)] = I(fp) and Var[w(X)] = E[w2(X)] − E[w(X)]2 we find
that minimizing Var[w(X)] is equivalent to minimizing E[w2(X)]. Note that if
X is drawn from p and w is set to be equal to f , then E[w2(X)] = I(f2p).

The sampling scheme we propose works by locally perturbing the samples
drawn from p to move them closer to the modes of f . Let g ∈ L1 be a compactly
supported function with I(g) = 1.

Locally Perturbed Sampling Procedure

1. Draw N independent samples X1, . . . , XN from p.
2. For each 1 ≤ j ≤ N , draw samples Zj from f(z)g(Xj−z)

(f∗g)(Xj)
dz.

3. Calculate the weights wj = (f ∗ g)(Xj)p(Zj)/p(Xj) and output {(Zj , wj)}.
The algorithm first draws samples from p, just like the canonical one. In the
second step, the samples are ‘moved’ towards the modes of f , but stay in the
close vicinity of the drawn samples thanks to the compact support of g.5 Hence
the name of the procedure. In the next step, weights are calculated so that
(Zj , wj) becomes a properly weighted pair for f, p.

5 A slight variant can be obtained by employing a two-variable kernel function G(x, z)
in place of g(x−z). Then in the algorithm (f ∗g)(Xj) is replaced by

∫
f(z)G(x, z)dz.
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In the above algorithm the function g could be a truncated Gaussian, or
the characteristic function of some convex set. In one extreme but practical
case g equals the weighted sum of translated Dirac-delta functions: gm(x) =∑m

k=1 vkδ(x− tk).We shall call such a function a Dirac-comb. When g is a Dirac-
comb, the random sample Zj is drawn from the weighted discrete distribution
{(Xj + tl, pl)}, where pl ∝ f(Xj + tl).

The following proposition shows that the proposed sampling scheme results
in unbiased samples.6

Proposition 1 Assume that g ∈ L1 is a compactly supported function satisfying
g ≥ 0 and I(g) = 1. Let f be a bounded, integrable function and let p be a density.
Then, the above sampling procedure yields properly weighted pairs (Zj , wj) with
respect to f, p.

The efficiency of the scheme will obviously depend on the correlation of f and
p: if the modes of p were far away from the modes of f then the scheme will be
inefficient. Another source of inefficiency is when the support of g is too small
to move the samples to the vicinity of the modes of f or when it is too large.
In the limit when the support of g grows to X the scheme reduces to likelihood
sampling. The following proposition provides the basic ground for the analysis
of the efficiency of this scheme.

Proposition 2 Assume that g ∈ L1 is an even, compactly supported function
satisfying g ≥ 0 and I(g) = 1 and let f be a bounded, integrable, nonnegative
function and let p be a density. Define the operator A : L1 → L∞ by

(Ah)(u) =

{∫
h(t)p(t)g(t− u)

(
p(t)
p(u) − 1

)
dt, when p(u) > 0;

0, otherwise.

Assume that for some s ∈ [1,∞], ε = suph∈L1,h≥0 supu(Ah)(u)/‖h‖s < +∞.
Let (Z,w) be a random sample as defined in the above algorithm. Then E[w2] ≤
〈f ∗ g, fp ∗ g〉+ εI(f)‖f‖s.

From this proposition it follows immediately that the proposed scheme is more ef-
ficient than the canonical algorithm whenever εI(f)‖f‖s ≤ 〈f, fp〉−〈f ∗g, (fp)∗
g〉. Clearly, this formula agrees well with our earlier intuition: the right hand
side is maximized, when the cross-correlation of f and fp is high and the cross-
correlation of f ∗ g and (fp) ∗ g is small. In some cases convolution with g
can thought of as a low-pass filtering operation (e.g. think about when g is the
characteristic function of the unit interval) and hence g cuts some of the high
frequency of f and fp. As a result, the cross-correlation of f ∗ g and (fp) ∗ g can
be expected to be smaller than the cross-correlation of f and fp.

It remains to see, however, whether A is bounded and ε is well defined.
For this define pd(x) = inf‖y‖<d p(x + y). Then, one can show that for s = 1,

6 Here and in what follows the proofs are omitted due to a lack of space. An extended
version of the paper available on the website of the authors contains all the missing
proofs. The proof of this proposition uses Fubini’s theorem and I(f ∗ g) = I(f).
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ε ≤ ‖p‖∞‖p/pd‖∞ < +∞. Of course, this bound is not particularly tight and
much tighter bounds can be derived in special cases. For example when g is
equal to the Dirac-comb defined earlier and if maxk ‖tk‖ ≤ d then (Af)(u) ≤
‖f‖∞‖p‖∞‖p/pd‖∞. Therefore, in this case Proposition 2 holds with s = +∞.
By means of some convexity arguments one may also derive bounds for mixture
densities. This can be useful to derive sharper bounds on ε.

4 Particle Filters Enhanced by Local Likelihood Sampling

Let us now consider the problem of filtering a non-linear system of the form
Xt = a(Xt−1) + Wt, Yt = b(Xt) + Vt, where Xt ∈ X is the state of the system7

at time t and Yt ∈ Rp is the observation at time t. We assume that X0 ∼ p0. Here
W1, V1,W2, V2, . . . are independent, W1,W2, . . . are identically distributed, just
like V1, V2, . . .. For the sake of simplicity, we further assume that the densities
K(x|x′) = p(Xt = x|Xt−1 = x′) and f(y|x) = p(Yt = y|Xt = x) exist. The
problem we consider is the estimation of the posterior p(Xt|Y1:t), where Y1:t

denotes the sequence of past observations: Y1:t = (Y1, . . . , Yt).
Particle filters approximate the posterior by a random measure πt(x) =(∑N
k=1 w

(k)
t δ(x−X

(k)
t )

)
/
∑N

k=1 w
(k)
t , where X

(k)
t are called the particles, and

w
(k)
t is the weight of the ith particle. X

(k)
t , w

(k)
t are random quantities and de-

pend on the sequence of past observation Y1:t. The best known particle filter is
probably the SIR8 filter [7], also known as CONDENSATION [8]:

SIR filter

1. Draw N independent samples X
(1)
0 , . . . , X

(N)
0 from p0.

2. Repeat for t = 1, 2, . . .:
(a) Draw X̂

(k)
t ∼ q(xt|X(k)

t−1, Yt), k = 1, . . . , N independently of each other.

(b) Calculate the weights w
(k)
t =

(
f(Yt|X̂(k)

t )K(X̂(k)
t |X(k)

t−1)
)

/q(X̂(k)
t |X(k)

t−1, Yt).

(c) Draw a sequence of independent indexes j1, . . . , jN such that p(jl = k) ∝
w

(k)
t and set X

(k)
t = X̂

(jk)
t . The corresponding weights are set to 1/N .

SIR uses importance sampling to sample from
f(Yt|·)K(·|X(k)

t−1)

p(Yt|Y1:t)
, hence its ef-

ficiency will depend on how well the proposal density q matches the shape of
this function. A particularly popular choice for the proposal q is the prediction
density K: q(xt|X(k)

t−1, Yt) = K(xt|X(k)
t−1). In this case drawing from q is equiv-

alent to simulating the dynamics of the system for a single time-step starting
from X

(k)
t−1. This is typically simple to implement, hence the popularity of this

choice. Also, in this case the weights become particularly simple to compute:
w

(k)
t = f(Yt|X(k)

t ) . We shall call the SIR algorithm with this choice the “basic”
or “canonical” SIR algorithm.

7 Typically we will have X = Rd.
8 Sampling Importance Resampling
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Following the “rule of thumb” discussed in the previous section we shall
measure the efficiency of sampling at time step t by Var[w(k)

t |X(k)
t−1, Y1:t].

Our proposed new particle filter uses the method of the previous section to
boost the performance of this algorithm in the case of low observation noise:

Local Likelihood Sampling SIR (LLS-SIR)

1. Draw N independent samples X
(1)
0 , . . . , X

(N)
0 from p0.

2. Repeat for t = 1, 2, . . .:
(a) Draw X̂

(k)
t ∼ K(·|X(k)

t−1), k = 1, . . . , N , independently of each other.
(b) Draw Z

(k)
t ∼ 1

α
(k)
t

f(Yt|·)g(X̂(k)
t −·),9 independently of each other, where

α
(k)
t =

∫
f(Yt|x)g(X̂(k)

t − x)dx .

(c) Calculate the weights w
(k)
t = α

(k)
t K(Z(k)

t |X(k)
t−1)/K(X̂(k)

t |X(k)
t−1).

(d) Resample from {(Z(k)
t , pk

t )} with pk
t ∝ w

(k)
t just like it was done in SIR

to get the particles X
(k)
t . Set the weights uniformly to 1/N .

The algorithm is identical to SIR except that the new particle positions are
determined using the two-stage sampling procedure introduced in the previous
section.

The following proposition shows the 1-step unbiasedness of the algorithm:

Proposition 3 Assume that g is a non-negative, compactly supported, inte-
grable function satisfying I(g) = 1. Then LLS-SIR does not introduce any more
bias than the SIR algorithm in the sense that for any integrable function h one
has

E[w(k)
t h(Z(k)

t )|Y1:t] = E[h(Xt)|Y1:t]p(Yt|Y1:t−1).

As a consequence of this proposition, convergence results analogous to those that
are known for the SIR algorithm can be derived.

Now, we compare the efficiency of the proposed algorithm with that of the
basic SIR algorithm. We shall focus on the case when g is a Dirac-comb since
this choice allows one to implement the filter for continuous state spaces which
is the case that we are particularly intrested in.

5 Variance Analysis: the Case of the Dirac-Comb

In this section for the sake of simplicity we consider one-dimensional systems
only. Note that these results extend to multi-dimensional systems without any
problems.10 We shall consider the choice gm(x) = 1

m

∑(m−1)/2
l=−(m−1)/2 δ(x−lλ),where

m,λ > 0.
The following theorem expresses the difference between the appropriately

normalized variance of basic SIR and that of LLS-SIR. The normalization is
9 Here g is a compactly supported, integrable, nonnegative function satisfying I(g) = 1

as before.
10 Note, however, that for high-dimensional state spaces more efficient schemes are

needed. One such scheme is given in Section 6.
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intended to compensate for the m-times larger number of likelihood calculations
required by LLS-SIR. The estimate developed here shows that LLS-SIR is more
advantageous than SIR when started from the same particle set.

Theorem 1 Assume that both the basic SIR and the proposed Local Likelihood
Sampling algorithm each draw X

(k)
t from K(·|X(k)

t−1), where X
(k)
t−1 is a common

sample from a density p̂(·) ≈ p(·|Y1:t−1). Let w
(k)
t (SIR) and w

(k)
t (P ) denote the

(unnormalized) weights of the basic SIR and the Local Likelihood Sampling algo-
rithm, respectively. Let ∆ = 1

NmVar[w(k)
t (SIR)|X(k)

t−1, Y1:t]− 1
N Var[w(k)

t (P )|X(k)
t−1, Y1:t] .

Let ε, s > 0 be defined as in Proposition 2, where in the definition of the operator
A one uses p(·) = K(·|X(k)

t−1). Let f(·) = f(Yt|·). Then N∆ ≥ (〈f, fp〉 − 〈f ∗ g, (fp) ∗ g〉)−(
m−1

m Varp[f ] + εI(f)‖f‖s

)
.Hence, the proposed sampling scheme is more effi-

cient than the one used by SIR provided that

〈f, p〉2 ≥ 〈f ∗ g, (fp) ∗ g〉+ εI(f)‖f‖s. (1)

Let us now specialize (1) to the case when g equals to the equidistant Dirac-comb
defined earlier. By using harmonic analysis arguments, one gets m/2〈f ∗gm, fp∗
gm〉 → 1/(2π)I(f)I(fp), as m → ∞. Hence, 〈f ∗ gm, fp ∗ gm〉 ∼ 1

mπ I(f)I(fp).
Hence, condition 1 can be approximated by < f, p >2≥ 1

mπ I(f)I(fp)+εmI(f)‖f‖∞.
Here, we have used εm instead of ε in order to emphasize the dependency of ε
on m. In general εm may (and often will) diverge to infinity as m →∞.11 As a
result we get a tradeoff as a function of εm. In general one expects that when
condition (1) is satisfied then it will be satisfied for an interval of values of m.

6 Experiments and Results
6.1 Simulation
We have simulated the system xt = xt−1/2 + 25xt−1/(1 + x2

t ) + 8cos(1.2t) +
Wt, yt = |xt|/20 + Vt, where Wt ∼ N(0, 10) and Vt ∼ N(0, 2).12 LLS-SIR
was implemented by using a Gaussian kernel Gσ(x, z) ∝ exp(−(sgn(x)x2/20 −
z2/20)2/(2σ2)). In this case f(Yt|z)G(Xt, z) becomes a Gaussian in z2 and hence
one can use importance sampling to sample Z from the corresponding density.
The system was simulated for T = 60 time steps and we have measured the
performance in terms of the average RMSE of |xt|. The number of particles was
N = 50. The RMSE results obtained are 2.12 and 0.94 for SIR and LLS-SIR,
respectively, whilst LLS-SIR took 1.1 times more time. Thus, in this case LLS-
SIR is slightly more expensive than SIR, but this may well pay off in its increased
accuracy.

6.2 Visual Tracking
The proposed algorithm was tested and compared with basic SIR on the problem
of tracking Japanese license plates. In these experiments, the outline of a license-
plate was taken as a parallelogram with two vertical lines.13

11 Note that when the state space X is compact then εm stays bounded.
12 This system is a slight variant of one system that has been used earlier in a number

of papers, in particular in the observation function we used |xt| instead of x2
t .

13 Thus the configuration of a license plate on the image can be defined with 5 param-
eters (assuming a fixed aspect ratio).



Enhancing Particle Filters using Local Likelihood Sampling 9

Japanese license plates enjoy a very specific geometrical structure, see Fig-
ure 1. This gives the basic idea of the observation model. The observation model
is scale-free and the likelihood is expressed as the product of the likelihoods of
the parts of the license plate where the parts are looked for at the precise loca-
tions as dictated by the geometry of the license plates: For each designated area
of a candidate plate we compute the likelihood of the observed pattern assuming
that the area is of the “right type”. The calculus of these likelihoods is imple-
mented in an ad hoc manner using simple image processing operations that rely
on measuring frequency content in the spatial domain. Based on a larger sample
of images we have found that the likelihood is sufficiently specific to these kind
of license plates. An example image is included in Figure 3.

Fig. 1. The model of a Japanese license plate. Checked means “thick line” area, dotted
means “thin line” area, dashed line means “clear” area, solid line means “edge”.

The object dynamics is a mixture of an initial distribution p0 and a simple
AR(2) product-process: in each time step with a constant probability we assume
that the license plate reappears at a random position unrelated to the previous
position. The probability of this event is set to a small value (0.1 in the experi-
ments described here). Separate AR(2) models were used to evolve the position,
scale, orientation and aspect ratio of the plate, each one independently of the
others. The parameters of the AR(2) model were tuned by hand by conducting
short preliminary experiments.

LLS was implemented only for the position of the plates. Denoting positions
by (x1, x2) and by p(x1, x2) the corresponding weights used in the LLS step, we
used p(x1, x2) = p(x1|x2)p(x2) in the sampling step as follows. We sample first x2

from p(x2), and then x1 from p(·|x2). The distribution p(x2) =
∑

x1
p(x2, x1) was

approximated by making the corresponding observation likelihoods insensitive
to the precise horizontal location. The search length was half of the size of the
predicted plate size, in both directions.

Results The performance of the local sampling algorithm with N = 100 sam-
ples was compared to the performance of the basic SIR filter using N = 750
particles. The number of particles for LLS-SIR was preestimated so that we ex-
pected the two algorithms to have roughly equivalent running times. It turned
out that both algorithm were capable of running faster than real-time. In partic-
ular, on our 1.7GHz Intel test machine we have measured a processing speed of
approximately 48 frames per seconds for the basic SIR algorithm, whilst for LLS-
SIR the measured processing speed was approximately 65 frames per seconds,
i.e., we have slightly overestimated the resource requirements of LLS-SIR.



10 P. Torma and Cs. Szepesvári

Performance evaluation was done as follows: We selected a test video sequence
that consisted of 298 frames. In each time step particle locations were averaged
to get the final guess of the license plate position. This position was compared
to the “ground truth” obtained by running basic SIR for the test video sequence
with N = 10, 000 of particles and then correcting the results manually. Some
frames of this sequence are shown in Figure 2. To be able to judge the difficulty of
the tracking task Figure 3 shows the observation likelihood function of a selected
frame. On this image the intensity of a pixel is proportional to the logarithm
of the maximum of the observation likelihood where the maximum is taken for
plate configurations with the center of gravity of plates matching the pixel’s
position, the orientation matching the best orientation, but keeping the scale of
the plates free.

Define the distance of two license plate configurations as the sum of distances
of their corresponding vertex points. If this distance is larger than one third of
the license plate height then the license plate is considered to be “lost”. The
probability of this event was estimated for each frame by means of running n =
100 Monte-Carlo experiments. Figure 4 shows the histogram of the probabilities
of object loss on the test sequence. Note the log-scale of both axis. The percentage
of frames when LLS-SIR tracks the plates (i.e it never looses the plate in any
of the experiments) is over 94%. The corresponding number is 77% for SIR.
Tracking error was measured for those frames when the object was tracked by
the respective algorithms. The median tracking error is 1.23 pixels and 5.36
pixels for LLS-SIR and SIR, respectively. The corresponding means are 3.62 and
5.29, the standard deviations are 4.88 and 5.91. Thus, we conclude that in this
case LLS-SIR is more efficient than the basic SIR algorithm both in terms of
execution speed and tracking performance.

7 Conclusions

We have proposed a new algorithm, LLS-SIR to enhance particle filters in the low
observation noise limit. The algorithm is a modification of the standard particle
filter algorithm whereas after the prediction step the position of the particles are
randomly resampled from the localized observation density. Theoretical analysis
revealed that the scheme does not introduce any bias as compared to the basic
SIR algorithm. It was also shown that the new algorithm achieves a higher
effective sample size than the basic one when the observations are reliable. This
results in a better tracking performance, as it was illustrated on a synthetic and
a real world tracking problem.

Further work shall include a more thorough evaluation of the proposed al-
gorithm and more comparisons with competing algorithms. On the theoretical
side, extending previous uniform convergence results to the new algorithm looks
like an interesting challenge. Another important avenue of research is to extend
the results of Section 5 so that one can compare the long term behaviour of the
various algorithms. Derivation of lower bounds on the tracking accuracy could
be another important next step, too.
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Fig. 2. Sample images of the test video sequence. The video sequence is recorded by
a commercial NTSC camera. The frame indexes of the images are 9,29,82,105,117 and
125. The plate positions predicted by LLS-SIR are projected back on the image.

Fig. 3. Log-likelihood of a selected frame of the test video sequence. Note that pixel
intensities are taken for the maximum of the logarithm of the obervation likelihood
where scale is kept free. For more information see the text.
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