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Abstract

We consider sequential importance sampling
for filtering dynamical systems observed in
noise and when the importance function is
defined over a few selected components of the
state space, typically the components corre-
sponding to the innovation part of the pro-
cess to be filtered. In this case the basic im-
portance sampling algorithm yields high vari-
ance estimates of the posterior. The problem
appears for example in visual tracking using
particle filters when one uses an importance
function based on the output of color blob de-
tector. In this paper we propose several new
methods that are proven to be unbiased and
show their increased efficiency.

1 Introduction

Let us consider sequential importance sampling algo-
rithms for the estimation of the posterior p(xt|y0:t)
corresponding to the observation sequence y0:t =
(y0, . . . , yt) (yt ∈ Rm) of the dynamical system with
state xt evolving in time (xt ∈ Rn) according to a
generic Markov model defined by the transition kernel
p(xt|xt−1) and where the observation density is given
by p(yt|xt).

In this paper we shall assume the followings:

Assumption A Partitioned dynamical model. As-
sume that the state xt is partitioned into two parts:

xt =
(

x1,t

x2,t

)

(1)

such that its evolution is given by

x1,t+1 = f1(xt) + wt, (2)

x2,t+1 = f2(xt), (3)

i.e., the component x1,t evolves stochastically, while
x2,t evolves deterministically. For obvious reasons, x2,t

will be called the history part and x1,t will be called
the innovation part of the state.

Assumption B Proposal density is defined over the
stochastic component. In more details, assume that
the proposal density π used in the importance sam-
pling step is defined over the subspace of the state
space corresponding to the first component x1,t of the
state.

Assumption C Cost of computing the evaluation of
the observation density is high.

In order to further simplify the exposition we shall
assume the following:

Assumption D The observation density depends only
on x1,t, the innovation part of the state:

p(yt+1|xt+1) = p(yt+1|x1,t+1)

(where the notation is abused as is usual in the litera-
ture).

Assumptions A, B, and C are quite often satisfied in
visual tracking problems. First, AR processes are of-
ten used in visual tracking problems and AR processes
satisfy Assumption A since their dynamics is given by

x1,t+1 =
∑p−1

i=0 Ai · (xt)i+1 + Bet+1,

(x2,t+1)j = (xt)j , j = 1, 2, . . . , p− 1.

Here (xt)i denotes the ith block of xt. It is also quite
common that Assumption B is satisfied e.g. when color
blob detection is used to produce the proposal density
as in [3]. Finally, Assumption C is justified since in
particle filter based visual tracking it is the evaluation
of the observation density that involves the expensive
image processing steps.

Sequential importance sampling has been considered
in the literature by many authors (for an overview
see [2]). The main loop of the classical particle fil-
ter algorithm adapted to our assumption is shown in



Table 1. Here, for the sake of simplicity, we have
presented the variant that resamples the particle set
in each step and we have assumed that the proposal
density depends only on the most recent observation
and not on the past states – this is also a relevant
assumption in visual tracking when the proposal den-
sity depends only the last frame observed. In the
followings the initialization phase of the algorithms
are omitted as they are usually trivial. Provided

1. Sample u(i)
t+1 ∼ π(u|yt+1)

and let x̂(i)
t+1 =

(

u(i)
t+1

f2(x
(i)
t )

)

.

2. Let w(i)
t+1 ∝ w(i)

t
p(yt+1|x̂(i)

t+1)p(x̂(i)
t+1|x

(i)
t )

π(u(i)
t+1|yt+1

).

3. Sample j(i)
t+1 ∼ (w(1)

t+1, . . . , w
(N)
t+1).

4. Let x(i)
t+1 = x̂

(j(i)
t+1)

t+1 .

Table 1: Main Loop of Basic SIR. See e.g. [2]. N is
the number of particles and i = 1, 2, . . . , N is a particle
index.

that the weights and particles are initialized appro-
priately, the particle set x(i)

t can be shown to repre-
sent an unbiased estimate of the posterior, i.e., for any
measurable function h defined over the state space,
E

[

(1/N)
∑N

i=1 h(x(i)
t ) | y0:t

]

= E [h(xt) | y0:t] . Unfor-
tunately, however, this algorithm can be very ineffi-
cient, and may require a large number of particles to
achieve even a modest precision, as in Step 2 many
weights can get small quickly. This is because the mul-
tiplicative term p(x̂(i)

t+1|x
(i)
t ) can be very small when

p(u(i)
t+1|x

(i)
t ) is small. Since u(i)

t+1 is sampled indepen-
dently of the past of the process and so it can be “con-
tradicting” with the history of the process this can be
expected to be the case. This is illustrated below on
Figure 1.

The inefficiency of particle filter methods have been
observed by many authors. The typical solution is
to choose a better proposal distribution. For exam-
ple, Pitt and Shephard proposed the so-called auxil-
iary variable method whereas the proposal distribu-
tion is an appropriately defined mixture that depends
both on the past state and the most recent observation
[5]. Although their method overcomes the problem
of weight degeneracy in most of the cases, it involves
R � N evaluation steps of the observation density
and thus the computational burden of this algorithm
when applied to visual tracking can be pretty high.

Figure 1: Illustration of the behavior of the Basic SIR
Algorithm. Assume that the state is two dimensional
and evolves according to a linear model. The first
two lines show the state xt = (qt, qt−1). Next, the
proposal density is shown and the innovations drawn
from it (ut+1). The arrows from qt to ut+1 show the
association of innovations with their histories. The
importance weights will prefer likely associations, but
the number of these can be very low. In the final part,
the importance of a pair is shown by the strength of
the arrow pointing from the past configuration towards
the associated innovation component.

More recently, van der Merwe et. al proposed to use a
bank of unscented Kalman filters to define the proposal
distribution [8]. This algorithm, called the unscented
particle filter, is similar in essence to the auxiliary vari-
able method but avoid the expensive likelihood calcu-
lations. Yet another method is presented in [7], where
the authors propose to trade off bias against variance
by adjusting the location of particles after the pre-
diction step so that the observation density is locally
maximized by the particles after the adjustment.

Here we shall attempt to propose new efficient algo-
rithms for the case where the proposal is restricted to
have the form π(x1,t|yt+1). Therefore we have:

Assumption E The proposal density, which is in gen-
eral π(xt+1|yt+1, x0:t), takes the form π(x1,t|yt+1).

This is an attractive assumption since importance



functions of the above form are easy to define and
sample from. Further, this is exactly the case that
was considered in the computational example on which
Isard and Blake illustrated their ICondensation algo-
rithm [3]. In this sense ICondensation is the algorithm
that is the most directly relevant to our case. We will
discuss ICondensation later after introducing the new
algorithms.

2 Algorithms

The idea of the algorithms we consider is to ensure
that for each particle the history part of the particle
will match the innovation component sampled from
the proposal. Effectively, we solve this by drawing an
appropriate history for each innovation sampled.

The main loop of the first algorithm we propose is
given in Table 2.

1. Sample u(i)
t+1 ∼ π(ut+1|yt+1)

2. Sample J (i)
t+1 ∼

(. . . ,
p(yt+1|u(·)

t+1)

π(u(·)
t+1|yt+1)

∑N
k=1 w(k)

t p(u(·)
t+1|x

(k)
t ), . . .)

3. Sample I(i)
t+1 ∼ (. . . , w(·)

t p(u
(J(i)

t+1)
t+1 |x(·)

t ), . . .).

4. Let x(i)
t+1 =







u
(J(i)

t+1)
t+1

f2

(

x
(I(i)

t+1)
t

)





.

Table 2: Main Loop of SIR with History Sampling.

In order to understand this algorithm, let us intro-
duce the auxiliary variables (x(i,j)

t , w(i,j)
t ) such that

(x(i,j)
t , w(i,j)

t ) = (x(i)
t , w(i)

t ). Let the particle set at time
t + 1 be defined by the equations

x(i,j)
t+1 =

(

u(j)
t+1

f2(x
(i)
t )

)

w(i,j)
t+1 = w(i,j)

t
p(yt+1|x(i,j)

t+1 )p(x(i,j)
t+1 |x

(i,j)
t )

π(u(j)
t+1|yt+1)

= w(i)
t

p(yt+1|u(j)
t+1)p(u(j)

t+1|x
(i)
t )

π(u(j)
t+1|yt+1)

,

where the last equality follows by our assumptions on
the observation and proposal densities. Now assume
that at time t the particle set (x(i)

t , w(i)
t )N

i=1 repre-
sents an unbiased estimate of the posterior p(xt|y0:t).
Clearly, by the unbiasedness of the basic importance

sampling scheme, the particle set (x(i,j)
t+1 , w(i,j)

t+1 )N
i,j=1

will represent an unbiased estimate of the posterior
p(xt+1|y0:t+1) (cf. Steps 1–2 of the basic SIR algo-
rithm of Table 1). Now, if I(i)

t+1 and J (i)
t+1 are the ran-

dom indexes drawn as in Step 2 and 3 of the algorithm,
then

P (I(i)
t+1 = k, J (i)

t+1 = l) = P (I(i)
t+1 = k|J (i)

t+1 = l)

P (J (i)
t+1 = l) =

w(k,l)
t p(u(l)

t+1|x
(k)
t )

∑N
l=1 w(k,l)

t p(u(l)
t+1|x

(k)
t )

∑N
l=1 w(k,l)

t p(u(l)
t+1|x

(k)
t )

∑N
k=1

∑N
l=1 w(k,l)

t p(u(l)
t+1|x

(k)
t )

∝ w(k,l)
t+1

Therefore Steps 2 and 3 of algorithm take the form of
a standard resampling step and therefore the particle
set (x(i)

t+1, 1/N)N
i=1 as defined above will also give an

unbiased estimate of the posterior. Actually, Step 2
and 3 of the above algorithm can be considered as
sampling from (. . . , w(·,·)

t+1 , . . .) by means of partitioned
sampling [4]: Step 2 samples the innovations to use,
whilst Step 3 samples the appropriate histories to be
associated with these innovation components.

The advantage of the algorithm against the basic SIR
algorithm should be clear: the algorithm selects (by
random sampling) pairs of innovations and histories
that have high probability of co-occurring, by reduc-
ing the variance of estimates. Convergence theorems
similar to those of [1] can be derived but are omitted
due to lack of space.

The next algorithm we consider is a variant where the
innovations are not sampled. This algorithm can be
considered as a Rao-Blackwellised version of the pre-
vious one whereas the unnecessary steps of sampling
the innovation is avoided, thereby further reducing the
variance. The algorithm is shown in Table 3.

1. Sample u(i)
t+1 ∼ π(ut+1|yt+1)

2. Sample I(i)
t+1 ∼ (. . . , w(·)

t p(u(i)
t+1|x

(·)
t ), . . .).

3. Let x(i)
t+1 =





u(i)
t+1

f2

(

x
(I(i)

t+1)
t

)



.

4. Compute w(i)
t+1 =

p(yt+1|u(i)
t+1)

∑N

l=1
w(l)

t p(u(i)
t+1|x

(l)
t )

π(u(i)
t+1|yt+1)

.

Table 3: Main Loop of RB-SIR with History Sampling.

This algorithm is illustrated on Figure 2. Clearly, in



Figure 2: Illustration of the behavior of the RB-SIR
History Sampling Algorithm. Again, we assume that
the state is two dimensional and evolves according to
a linear model. The first two lines show the state
xt = (qt, qt−1). Next the proposal density is shown
and the innovations ut+1 drawn from it. The arrows
from qt to ut+1 show the association of innovations
with their histories. The strength of these arrows are
proportional to the weights that are used in sampling
the history for each innovation. Finally, the impor-
tance weighting function is shown. The final set of
particles is shown in the last two lines, where again the
strength of the arrows is proportional to the weight of
the given particle.

contrast to the basic SIR algorithm, the effective sam-
ple size will stay higher as sampling the histories helps
to reduce the effect of arbitrary innovation-history as-
sociations.

In order to show the unbiasedness of the algorithm, in
this case we evaluate R = E[

∑N
i=1 w(i)

t+1h(x(i)
t+1)|y0:t+1]

directly:

R = E[
N

∑

i=1

w(i)
t+1h(x

(I(i)
t+1,i)

t+1 ) | y0:t+1]

=
N

∑

i=1,l=1

E

[

P (I(i)
t+1 = l|y0:t+1, w

(·)
t , x(·)

t , u(·)
t+1) ·

E
[

w(i)
t+1h(x

(I(i)
t+1,i)

t+1 ) | y0:t+1,

I(i)
t+1 = l, w(·)

t , x(·)
t , u(·)

t+1

]

| y0:t+1

]

Now, since

P (I(i)
t+1 = l|y0:t+1, w

(·)
t , x(·)

t , u(·)
t+1) =

=
w(l)

t p(u(i)
t+1|x

(l)
t )

∑N
r=1 w(r)

t p(u(i)
t+1|x

(r)
t )

and plugging in the definition of w(i)
t+1, we get

R =
N

∑

l=1,i=1

E

[

w(l)
t p(u(i)

t+1|x
(l)
t )

∑N
r=1 w(r)

t p(u(i)
t+1|x

(r)
t )

·

p(yt+1|u(i)
t+1)

∑N
k=1 w(k)

t p(u(i)
t+1|x

(k)
t )

π(u(i)
t+1|yt+1)

·

h(x(l,i)
t+1 ) | y0:t+1

]

=
N

∑

l=1,i=1

E

[

w(l)
t p(u(i)

t+1|x
(l)
t ) ·

p(yt+1|u(i)
t+1)

π(u(i)
t+1|yt+1)

· h(x(l,i)
t+1 ) | y0:t+1

]

=
N

∑

l=1,i=1

E

[

w(l,i)
t+1 h(x(l,i)

t+1 ) | y0:t+1

]

,

which finishes the proof of the claim, since the par-
ticle set (x(p,q)

t+1 , w(p,q)
t+1 ) is known to give an unbiased

representation of the posterior.

Again, under appropriate conditions, bounds on the
variance of the estimate of the posterior can be derived
along the lines of [1].

Other variants of the algorithm can be given. As an
example let us mention the variant when the history
component is kept for each particle and the innova-
tion component is resampled. This variant would only
be useful if one believes that the particle set bears
more information about the posterior than the pro-
posal function. Since it is quite typical that one be-
lieves in the opposite of this, we do not consider this
variant here.

Finally, let us mention the practical case when the
proposal function is further restricted to selected com-
ponents of the innovation. For example in visual track-
ing, often the proposal function is defined only for the
translational components and not for the other defor-
mational parameters (e.g. rotation). This is exactly
the case of the blob detection defined by Isard and
Blake [3]. In this case one can still use a variant of
RB-SIR with History Sampling. The main loop of this
algorithm is given in Table 4.

We shall still use ut+1 for the component sampled from
the proposal, while vt+1 is the subspace of x1,t+1 which



1. Sample u(i)
t+1 ∼ π(ut+1|yt+1)

2. Sample I(i)
t+1 ∼ (. . . , w(·)

t p(u(i)
t+1|x

(·)
t ), . . .).

3. Draw v(i)
t+1 from p(v(i)

t+1|u
(i)
t+1, x

(I(i)
t+1)

t ).

4. Let x(i)
t+1 =









u(i)
t+1

v(i)
t+1

f2

(

x
(I(i)

t+1)
t

)









.

4. Compute w(i)
t+1 =

p(yt+1|u(i)
t+1)

∑N

l=1
w(l)

t p(u(i)
t+1|x

(l)
t )

π(u(i)
t+1|yt+1)

.

Table 4: Main Loop of RB-subspace-SIR with History
Sampling.

cannot be determined by the importance function.1

For the derivation on the importance weight note that:

p(x(i)
1,t+1|x

(I(i)
t+1)

t ) = p(u(i)
t+1, v

(i)
t+1|x

(I(i)
t+1)

t ) =

= p(v(i)
t+1|u

(i)
t+1, x

(I(i)
t+1)

t )p(u(i)
t+1|x

(I(i)
t+1)

t ).

Here the first term is the one v(i)
t+1 is drawn from in Step

3 of the algorithm, so only the second term remains in
the importance weight.

Sampling from p(vt+1|ut+1, xt) is not always straight-
forward, but it is in the most usual practical cases.
For example if the system noise is Gaussian, it is a
marginal of it, still being Gaussian. In many other
cases p(vt+1|ut+1, xt) = p(vt|xt), which certainly fur-
ther simplifies the algorithm.

3 Experiments

To purpose of this section is to present some exper-
imental results proving the effectiveness of the new
algorithms. The algorithms were tested on a contour
based visual tracking problem where the dynamical
model was a second-order AR process and the obser-
vation density is defined using local measurements on
the image at the normals of the spline representing the
contour to be tracked. The four dimensional configu-
ration space is the Descartes product of the spaces of
the translation, rotation and scale parameters. Details
of the computations can be found in [6].

1In Blake and Isard [3] ut+1 is the translation subspace,
while vt+1 is called deformation subspace.

For the proposal we used a Gaussian color blob detec-
tor working on the original frames (the resolution of
the original frames are 240×180) and then the output
was down-sampled to a resolution of 24 × 18. Spatial
indexes were then drawn from the appropriately re-
scaled output of the blob detection and the final ran-
dom spatial positions are obtained by applying a ran-
dom perturbation to the corresponding central on the
image positions. This was done by sampling another
“fine-scale” index uniformly over a 10×10 matrix and
using the obtained values to “refine” the initiate posi-
tions. The task was to track an artificial object, while
another object with the same color and shape was lying
on the table to make the task of tracking non-trivial;
i.e. “tracking in clutter”. For the sake of compar-
isons CONDENSATION (also known as N-IPS), the
basic SIR algorithm and RB-subspace-SIR with His-
tory Sampling (the third variant) were tried. A typical
tracking scenario using RB-subspace-SIR with History
Sampling is presented in Figure 3.

In one sequence of 5 seconds of video sampled at 30
fps the configurations of the object to be tracked were
determined manually (this is the sequence shown on
Figure 3). Each algorithm was then tested on this se-
quence with 100 different random initializations. Ac-
curacy of tracking and the probability of losing the ob-
ject to be tracked were measured. Equivalent running
time experiments were considered on an Intel Pentium
IV 1.4GHz computer with 128M RAM, i.e., the parti-
cle sizes were set so that the running time of the al-
gorithms were the same (no special attempt was made
to optimize any of the algorithms). The corresponding
particle sizes are given in Table 5.

Algorithm Particle Size
CONDENSATION 2000
Basic SIR 3000
RB-subspace-SIR with HS 400

Table 5: Particle sizes used in the experiments.

Results of accuracy measurements are shown in Fig-
ure 4. The curves represent the accuracy as the dis-
tance to the object to be tracked in pixels averaged
over the 100 runs. It should be clear from the figure
that in terms of their accuracy the algorithms are or-
dered as CONDENSATION ≈ RB-subspace-SIR with
HS � Basic SIR.

The probabilities of losing the object are shown in Fig-
ure 5. The probability of losing the object is measured
by computing the fraction of cases when the hypothe-
sis of the tracker is outside of a certain large neighbor-
hood of the object to be tracked (here defined to be 50



pixels).2 Again, the ordering of the algorithms remains
the same: RB-subspace-SIR with History Sampling
tracks the object reliable just as CONDENSATION,
while Basic SIR performs much weaker.

By a more close inspection of the data we observed
that when CONDENSATION is locked on the object,
it quite accurate while if the object is lost the recov-
ery is very slow. On the other hand RB-subspace-
SIR with History Sampling recovers fast from tempo-
ral mistakes, which is clearly due to the importance
sampling scheme.

4 Discussion

The above experiments show that the algorithms pro-
posed here to overcome the problems with the effi-
ciency of Basic SIR work as expected. Although the
results obtained are very encouraging, one should not
forget that the new algorithms require evaluation of
dynamical likelihood N2 times (such as in Blake and
Isard [3]). Fortunately, the most computationally ex-
pensive part, the number of evaluations of the ob-
servation densities is still O(N), so in practice, with
an efficient implementation3 the new algorithms can
represent a viable alternative to running basic SIR or
CONDENSATION with a larger number of particles.
This has also been proven here by the experiments.

What remains is the discussion of the relation to ICon-
densation, the algorithm introduced in [3]. At a first
glance ICondensation looks very similar to Basic SIR.
However, let us take a closer look at this algorithm. In
Figure 1 of [3] in Step 2(a) the next state is sampled
from the proposal (as in the Basic SIR algorithm),
but in calculating the importance weights Isard and
Blake used the calculations given in RB-SIR with His-
tory Sampling (Step 2(b) and 3 of their algorithm).
The same problem appears when they describe the
details of the algorithm in Section 4.2. Clearly ICon-
densation is not unbiased. Why does this algorithm
work at all? One explanation is that when all the par-
ticles are concentrated into the same portion of the
state space then the importance weights by summing
up the prediction densities will be close to the im-
portance weights computed as given in the Basic SIR
algorithm. Another explanation is that because of a
“mixture” of lucky choice of parameters, models (e.g.
The bias introduced will be small if the state predic-
tion density is very flat), a very good proposal density

2In order to separate the effect of losing the object from
problems with accuracy when the object is tracked, when
the object is lost at a certain point in time, distance mea-
surement is not used in measuring the accuracy.

3If the dynamical system noise is Gaussian, one can
evaluate the dynamical likelihood with a help of a lookup-
table.

and also because the algorithm mixes CONDENSA-
TION with importance sampling and re-initialization
in a clever way. We think that CONDENSATION with
re-initialization could achieve similar results. Also,
there are results showing that CONDENSATION is
robust against perpetual perturbations provided that
these perturbations satisfy certain conditions (see The-
orem 3.1 of [7]).

5 Conclusions

In this paper we have reconsidered sequential impor-
tance sampling for filtering dynamical systems when
the proposal distribution takes a special form, found
commonly in visual tracking problems. We have ar-
gued that the “Basic SIR” algorithm can be very in-
efficient in this case since the probability of the inno-
vation component drawn from the proposal given its
associated history can be very low. We have proposed
new algorithms with the aim to overcome the prob-
lems. Given the innovations sampled from the pro-
posal, the new algorithms sample the “history”. The
new algorithms were shown to yield unbiased estimates
of the posterior and, by means of computer experi-
ments, were shown to yield superior performance as
compared with Basic SIR. Further the new algorithm
has shown to perform equivalent to CONDENSATION
with less particles. Further work shall include a more
comprehensive comparison of the new algorithms to
other algorithms and in particular a comparison with
UPF, and combination of the new algorithms with LS-
N-IPS.
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Figure 3: A typical tracking sequence with a 600-
particle RB-subspace-SIR with History Sampling.
Black contours show probable configurations, while the
white contour represents the expected configuration.
The object on the table has the same characteristics
(e.g. is made of the same material of the same color)
as the object to be tracked.
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