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Abstract

With computational power doubling every 1.5 year, non-linear filters are gaining impor-
tance and popularity. This facilitates the emergence of new ideas in control theory, artificial
intelligence, image processing, and more specifically in object tracking. A widely accepted
broad framework for studying non-linear filtering is that of the framework of discrete-time
Hidden Markov Models (HMM).

In this thesis we will consider non-linear approximate Bayesian filtering applied to
the state estimation problem of continuous state-space HMMs. Bayesian filtering is the
process of calculating the posterior given a model and a prior. In approximate Bayesian
filtering only approximate knowledge of the HMM generating the observations is available
to the observer. One problem that we will consider in this thesis is the Bounded Input
Bounded Output (BIBO) stability of the certainty-equivalence Bayesian filter, i.e., if the
error of the response of the certainty-equivalence Bayesian filter can be bounded by the
approximation error of the model, uniformly in time. The filter’s stability properties shall
be related to the ergodicity properties coefficient of the Markov process corresponding to
the filter-dynamics. The stability analysis will also be extended to the practical case when
the filter response is calculated approximately e.g. by means of a sequential Monte-Carlo
algorithm. Interestingly, no similar stability analysis existed in the literature prior this
work. Convergence, stability and finite-sample size bounds are derived.

An algorithm, called LS-N-IPS, extending sequential Monte Carlo Bayesian filtering is
proposed and is shown to be more efficient than the baseline algorithm when the observation
density function is sufficiently “peaky”. The algorithm adds local search to the baseline
algorithm: in each time step the prediction of the approximate model is refined in a local
search procedure that utilizes the most recent observation. It is shown by means of a
heuristic argument and some numerical examples that the algorithm is indeed superior
than the baseline algorithm.

Experiments are performed on various visual-tracking problems. In one set of experi-
ments an artificial object with a homogeneous color is tracked, whilst in another set the
tracking of the hand of a human being is considered. The state space of tracking is chosen
to be the multi-dimensional manifold encoding the position, orientation, scale and the ve-
locity of the object to be tracked. The observation model is based on a spline model of the
object’s shape combined with a color-model, the observation density being modeled in a
somewhat ad-hoc way assuming quasi-independence of parts of the contour being far away
of each other, and independence of the object’s color and contour. Dynamics is modeled
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by means of a MIMO AR(2) model.
Experiments are performed in a natural, cluttered indoor scene. Tracking performance

in terms of total tracking time, recovery time after occlusion, and behavior in the presence
of ambient illumination changes were studied. Results show a significant improvement as
compared to the behavior of the baseline filtering algorithms.

In summary, in this thesis:

1. We prove a new robust stability theorem concerning particle filters.

2. We discuss the limitations and possible extensions of the proven theorem.

3. We propose a new particle filtering algorithm (LS-N-IPS) and show that it is sig-
nificantly more efficient than its closest relatives provided that the observations are
“reliable”.

4. We propose an implementation of the newly proposed particle filter for visual object
tracking based on a combination of Gaussian color, and B-spline contour models.
We derive an algorithm for approximating the matrix that transforms support points
into control points in an efficient way.

5. We show that the proposed algorithm significantly outperforms baseline algorithms in
tracking visual objects in natural indoor environments. In particular, we demonstrate
near real-time tracking performance without the use of (unreliable) color information.
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Chapter 1

Introduction

1.1 The Filtering Problem

Let us consider the discrete time stochastic system

Xt+1 = f(Xt) + Vt, (1.1)
Yt = g(Xt) + Wt, (1.2)

where t = 0, 1, 2, . . . denotes the time and Vt,Wt are martingale difference series such that
the observation density p(Yt = y|Xt = x) exists. Xt ∈ X is called the state of the system
at time t, X is called the state-space, Yt ∈ Y is called the observation at time t, Y is the
observation space. In this report Y and X will be taken to be measurable Polish-spaces
with the Borel sigma algebra, unless otherwise noted. f : X →X , a measurable mapping,
is called the dynamics of the system and g : X →Y , another measurable mapping, is called
the observation model. The pair (f, g) is called the model of the system.

The filtering problem consists of the estimation of the posterior distribution of Xt given
the past observations Y0:t = Y0, . . . , Yt. The posterior at time step t will be denoted by πt,
(supressing the dependence on the observations Y0:t and the model f, g) :

πt(A) = P (Xt ∈ A|Y0:t),

where A ⊂ X is any measurable subset of X .
The filtering problem has an analytic solution that can be obtained by the repeated

application of applying the Bayes-theorem:

πt+1 =
GYt+1Fπt

(GYt+1Fπt)(X )
, (1.3)

where F,Gy : M(X )→M(X ) are defined by

(Fπ)(A) =
∫

K(x,A)dπ(x), (1.4)

(Gyµ)(A) =
∫

A
g(y|x)dµ(x). (1.5)

1



2 CHAPTER 1. INTRODUCTION

Here K(x,A) is the (transition) kernel associated with (1.1) and g(y|x) is the observation
density: g(y|x) = p(Yt = y|Xt = x).1

Unfortunatly, the solution of (1.3) cannot be computed analytically except in a few
exceptional cases when e.g. the model is simple, like in the case of Kalman filters, or when
the state and the observation spaces are finite and small. In practice, these simplifications
are often invalid and may lead to large errors in the estimates. Therefore a large body
of current work in the filtering literature is devoted to the approximate solution of this
equations.

1.2 Visual Tracking as a Filtering Problem

Visual tracking of objects can be cast as a filtering problem as follows: In a typical tracking
problem we are interested in the position, pose, and velocity of the object to be tracked,
in the outer 3D space, i.e.: the state Xt will correspond in this case to the concatenation
of the position, pose and the velocity information. The observation, Yt shall correspond to
the observed image at time step t. Equation (1.2) tells us that this image can be obtained
as a function of the state of the system, plus some noise.

Knowledge of the posterior distribution, πt, shall allow us to derive all kind of properties
of the state of the system. We can, for example, compute the expected value of the state,
E[Xt|Y0:t]. Given πt one can also compute higher order moments of it, e.g. the variance,
etc.

What assumptions do we make when we cast the tracking problem as a filtering prob-
lem? Although, the autonomous state evolution model itself can be demanding on its
own right (most objects to be tracked do interact with other objects - a fact not captured
by Equation (1.1)), the validity of the observation model puts a larger constraint on the
system. If, the ”background” is not static, but if there are non-random (e.g. periodic)
elements of it then there will be no function g such that the observation equation will be
satisfied.

Typically we are going to work with linear dynamics and non-linear observation models.
The highly non-linear nature of the observation model prevents us from using Kalman-
filtering and simple extensions of it. In particular, in visual tracking the posterior is often
multi-modal. Hence the need for advanced methods.

In visual tracking, the most complicated model is the observation model itself. In this
report, we will work with contour (shape) and color observation models. The contour model
we use will be similar to that of Blake and Isard [1] in that we will use splines. However, we
devoted a great deal of work to overcome one problem with the Blake and Isard approach,
namely that they define the splines by means of their control points. Splines defined
by their control points provide a natural and mathematically elegant parameterization of
spline curves, but has serious deficiencies as first class shape models. For example, they
are not guaranteed to be loop free and their smoothness is largely uncontrolled. This is

1In the literature Equation (1.3) is sometimes called the Zakai equation, or the Feynman-Kac formula
for the posterior. Equation (1.3) also arises in biological studies, e.g. in the theory of genetic algorithms.
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not problematic as long as the shape to be tracked is convex. Since we want the model to
be able to track e.g. human hands with opened fingers, we need a better model of shapes.

Therefore, we developed a shape-model that uses interpolating splines defined by their
support-points as its starting point and which also guarantees that the generated spline
will be loop-free. For the sake of keeping the efficiency of the algorithms, we propose an
algorithm that is capable of approximating the splines with a small error and is computa-
tionally efficient.

1.3 Filtering with Approximate Models

Where do the dynamics and the observation models come from? In certain cases, we have
some cues about the dynamics of the filter to be tracked (e.g. we know that the state
evolution is subject to Newton’s laws), or we have some cues about the observation. Still,
in most of the cases we do not know the exact models, and thus we must first identify the
system.

No matter how we do that, in fact, the best we can hope at the end of the identification
process is to have an upper bound, or tolerance on the error of approximation of the derived
models. We must then use approximate models instead of the true (unknown) ones in the
filtering process.

The question then arises about the effect of the approximation error. Can this effect
the filter in a bad way? Or is it always the case that approximation errors are harmless
from the point of view of filtering error?

We are going to use the properties of the Hilbert-projection metrics to show that if the
original system dynamics is ”nice” enough then the approximation errors do not accumulate
and are indeed harmless. More exactly, we are going to bound the filtering error in terms
of the approximation error of the models. Looking at the error-equations, if the filtering
error is viewed as the input and the approximation error as the output then our result can
be regarded as a bounded-input bounded-output (BIBO) stability result.

The theory that will be developed here is far from being complete: we know of classes
of systems about which we believe that their filtering equation is BIBO-stable but which
lie outside of the realm of our theorems. In pursue for the full characterisation of systems
having a BIBO-stable filtering equation, we give a number of counter-examples when the
filtering equation will not be BIBO-stable.

1.4 N-IPS: Approximate Filtering by Sequential Monte-
Carlo Methods

As it was noted above, the exact solution of the filter evolution equation (1.3) is not
feasible in general. One approach to overcome this problem is to use sequential Monte-
Carlo methods to sample from the posterior. The underlying idea of sequential Monte-Carlo
methods is that if one has an unbiased weighted sample (X(i)

t , w(i)
t ),i = 1, 2, . . . , N from
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the posterior πt (i.e., E[
∑N

i=1 f(X(i)
t )w(i)

t ] =
∫

f(x)dπt(x)) then an unbiased sample from
πt+1 can be generated by the following two-step method:

1. Prediction: X(i)
t+1 = f(X(i)

t ) + V (i)
t , i = 1, 2, . . . , N ,

2. Evaluation: w(i)
t+1 ∝ w(i)

t g(Yt+1|X(i)
t+1), i = 1, 2, . . . , N .

In the evaluation step the weights are normalized so that they will sum to 1. Elements
of the sample (X(i)

t ) are traditionally called particles and the filtering method is called
particle filtering. Here V (i)

t are random variables having the same law as Vt.
Although, over finite intervals this method might work well provided that the number

of particles, N , is large enough, it will not work over unbounded intervals of time (i.e.,
when one does not know a bound on the filtering interval) since, in order to generate a
bounded tracking error, the number of particles should scale, in general, with the length
of the interval. Therefore this simple method is not practical in general. The problem of
this method is that given any finite sample size the weights w(i)

t will degenerate: w(i)
t will

converge to 0 except for one index, for which w(i)
t will converge to 1.

In order to prevent this degeneration, a resampling step was introduced into the above
procedure. In its simplest form the resampled particle filter (or the “interacting particle
system” or N-IPS model2 [12]) assumes the form:

1. Prediction: X̃(i)
t+1 = f(X(i)

t ) + V (i)
t , i = 1, 2, . . . , N ,

2. Evaluation: w(i)
t+1 ∝ g(Yt+1|X(i)

t+1), i = 1, 2, . . . , N ,

3. Resampling: Sample j(i)
t+1 from (w(1)

t+1, w
(2)
t+1, . . . , w

(N)
t+1) and let X(i)

t+1 = X̃
(j(i)

t+1)
t+1 , i =

1, 2, . . . , N .

X(1)
0 , . . . , X(N)

0 are assumed to be generated according to a common law, πN
0 = π0.

A basic result of del-Moral, which will be quoted in its exact form in Section 2.2,
concerns the uniform convergence of this filter. The first observation, on which that result
is based is that the posterior of (X(1)

t , . . . , X(N)
t ),

µN
t (A) = P ((X(1)

t , . . . , X(N)
t ) ∈ A|Y0:t)

follows closely the form of Equation (1.3). Let

µN
0 (A1 × A2 × . . .× AN) =

N
∏

i=1

πN
0 (Ai)

and

µN
t (A1 × A2 × . . .× AN) =

N
∏

i=1

πN
t (Ai),

2As noted by del Moral, the model also incorporates certain genetic algorithms and other randomized
optimization methods.
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where
πN

t (A) =
1
N

∑

i=1N

πX(i)
t

(A),

and where πx denotes the counting measure that assigns a unit mass to sets containing x:
πx(A) = χA(x) (χA denotes the characteristic function of set A). By simple calculations
one then gets

πN
t+1(A) =

∫

g(Yt+1|x)K(x,A)dπN
t (x)

∫

g(Yt+1|x)dπN
t (x)

,

i.e., πN
t satisfies the filter evolution equation (1.3).

The BIBO result proved by del Moral [12] can roughly be stated as

Theorem 1.4.1. When the functions g(·|x) and the Markov transition kernels K(x, ·) are
“sufficiently regular” there exists an exponent α > 0 and an index N0 > 0 such that for
any bounded measurable function h

sup
t≥0

E( |
∫

hdπN
t −

∫

hdπt |Y0:t ) =
(

‖h‖∞
Nα

)

,

where N ≥ N0 and πt is the posterior computed by (1.3) and πN
t is the empirical distribution

corresponding to the particle filter.

This theorem assumes perfect knowledge of the system to be filtered. As we argued
above, this is an unrealistic assumption. A result of primary interest concerns N-IPS where
in the algorithm approximate models are used. We shall prove the following theorem:

Theorem 1.4.2. Assume that the functions g(·|x) and the Markov transition kernels
K(x, ·) are “sufficiently regular” and they are approximated with some models ĝ and K̂,
respectively, with tolerance β (in some distance measure measure to be defined later). Then
there exists an exponent α > 0 and a constant 0 < τ < 1 depending only on Ksuch that
for any bounded measurable function h

sup
t≥0

E(|
∫

hdπ̂N
t −

∫

hdπt |Y0:t) =
5 exp(2γ̂′)

N α̂/2 +
4β

log(3)(1− τ)

where N ≥ 1 and where π̂N
t is the empirical distribution that corresponds to the particles

when the approximate model (ĝ, K̂) is used in the course of updating the particle positions.

1.5 LS-N-IPS: A Sequential Monte-Carlo Method Com-
bined with Local Search

On sequential computers the running-time of Monte-Carlo methods scales linearly with the
number of particles3 In visual tracking the computationally most expensive operation is

3Note that Monte-Carlo methods are well parallelizable algorithms in general.
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the calculation of the observation densities g(Yt|X(i)
t ) since this involves substantial image

processing operations. Therefore, the reduction of the number of particles is of great
practical interest (i.e., the increase of the efficiency of the filter). Since the quality of the
filter depends on the number of particles (see the results of the previous section) it is far
from being trivial if such a reduction can be achieved.

Here we propose a method which, according to our experiments under a wide range of
conditions performs significantly better than the basic N-IPS algorithm if the number
of particles is (relatively) small and is equivalent to the N-IPS algorithm in terms of
performance if the number of particles is larger.

The idea of the method is to reduce the time spent on the calculations of observation
likelihoods corresponding to particles with a small observation likelihood. Particles that
have small observation likelihoods are not likely to “survive” in the resampling time and
thus every millisecond spent on the computation of their observation likelihood is likely to
be wasted. One can imagine two approaches here, either spend less time on the computation
of small observation likelihoods or bias the evolution of the particles such that no particles
will have small observation likelihoods. In this work, we pursue this approach, giving up the
unbiasedness of the estimate of the posterior. Therefore our method can be interpreted
in the usual bias-variance framework: the method reduces the variance at the price of
introducing some bias.

The method we propose updates the positions of the particles according to the equation

X(i)
t+1 = Sλ(f(X(i)

t ) + V (i)
t ), Yt+1),

where Sλ typically performs local-search in a neighborhood of size λ of Z(i)
t+1 = f(X(i)

t )+V (i)
t

such that g(Yt|X(i)
t+1) will be larger than g(Yt|Z(i)

t+1). We shall call this method the local
search N-IPS method, or LS-N-IPS.

As a simple example, aiming to show the improved performance of LS-N-IPS consider
the system defined by Xt+1 = Vt+1, Yt = Xt+Wt, where var(Wt) << var(Vt). If Sλ(x, y) = y
(assuming that g(y|y) = argmaxxg(y|x)) then the local search renders all particles to Y ,
i.e., X(i)

t = Y and thus the estimate of the position of Xt is
∫

xdπN
t = Yt. Here (and

in what follows) πN
t denotes the estimated posterior corresponding to the particle system

{X(i)
t }N

i=1 of size N .4 On the other hand the estimate of the N-IPS model is given by

X t =
N

∑

i=1

g(Yt|V (i)
t )

∑N
j=1 g(Yt|V (j)

t )
V (i)

t .

Clearly, under a wide range of conditions E(|Yt −Xt|2 |Xt) << E(|X t −Xt|2 |Xt) and in
this sense, the estimate of LS-N-IPS is better than that of the N-IPS model. If we assume
that Vt and Wt are Gaussian with respective covariances Q and R then the posterior can be
computed analitically (using the Kalman-filter euqations), yielding X

∗
t = Q(Q + R)−1Yt.

Therefore X∗
t is close to Yt provided that var(Wt) << var(Vt).

4πN
t (A) = (1/N)

∑N
i=1 χA(X(i)

t ), where χA is the characteristic function of the measurable set A.
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Another interpretation of the observed increased efficiency of LS-N-IPS model comes
from considering the effects of using approximate models. As it was noted already, in
practice one must use an approximate model of the dynamics. Now imagine that the error
of this model is higher than the variance of the noise of the observations. By the same
argument as above, LS-N-IPS will help in this case. The local search will act as effectively
reducing the error of approximation of the model of the dynamics.

Depending on the implementation of the local search operator Sλ, LS-N-IPS might
unwantedly reduce the effective sample size This is not desirable if e.g. the observation
allows alternative hypotheses about the state, i.e., when the posterior is multi-modal. A
typical implementation would climb locally the function g(Yt|·). This can be implemented
in a number of ways. The parameter λ ≥ 0 controls how much we “trust” the observation
model (λ = 0 meaning that we do not trust in it at all). In later sections we will provide
an example for the implementation of Sλ for a visual tracking problem.

LS-N-IPS can also be thought of as a variance reduction technique. In the literature,
many variance reduction techniques have been developed, here we mention only the few
most relevant ones.

The first method we consider combines importance sampling (IS) and sequential Monte-
Carlo filtering. This method is called Sequential Importance Sampling with Resampling
(SIR): the proposed states X̃(i)

t+1 are sampled from an appropriately chosen proposal distri-
bution that may also depend on the most recent observation Yt+1. The computation of the
weights is changed to compensate for the bias introduced by sampling from the proposal
instead of the dynamics. The problem with this method is that the proposal is usually
quite hard to design - indeed, a large body of work in the current literature is devoted to
the design of proposals. The proposal has to satisfy two competing needs: (i) sampling
from the proposal should be computationally cheap and (ii) the observation likelihoods
should increase on average (hence the variance reduction effect). Sampling from the dy-
namics is typically very cheap - in visual tracking problems it does not involve any image
processing steps. If the proposal is dependant on the most recent observation then sam-
pling becomes a problem. Typically sampling must be accomplished by a general purpose,
e.g. a Monte-Carlo Markov-Chain (MCMC) procedure which might require the evaluation
of g(Yt+1|·) at several points. Further, the running time of MCMC procedures is random -
a disadvantage in tasks where predictable, real-time performance is required.

Another method, closely related to the LS-N-IPS method is the auxiliary variable
method (AVM) of Pitt and Shephard [14]. AVM can be thought of as a special case
of SIR. It builds on two ideas. The first idea is to let the proposal be of the non-parametric
mixture form

N
∑

i=1

g(Yt+1|µ(i)
t+1)

∑N
j=1 g(Yt+1|µ(i)

t+1)
f(·|X(i)

t ).

Here f is the density corresponding to the dynamics of the model (with a slight abuse of
notation): f(xt+1|xt) = p(Xt+1 = xt+1|Xt = xt) and µ(i)

t+1 is an auxiliary variable: typically
f(X(i)

t ) or the modulus of f(· · · |X(i)
t ).

The second idea is to “over-sample” from this proposal, i.e., sample R >> N samples
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from it, instead of just sampling N samples. This ensures a more precise representation
of the proposal, increasing the overall filtering accuracy. Note that sampling from this
proposal does not require an MCMC method provided one can sample from the dynamics
of the model.

The last step of AVM is to compute the importance weights of the R samples and
finally to resample from these samples to get N samples.

The disadvantage of this method is that in general it requires the calculation of O(R+N)
observation likelihoods - a clear disadvantage when real-time performance is required.



Chapter 2

Theoretical Analysis

2.1 A Result on the Robustness of the Bayesian Filter

In this section first definition and basic features are discussed of Hilbert’s projective metric,
then contraction properties are stated, and finally these results are used for a robustness
proof of the Bayesian filter.

Def 1. (Hilbert Projective Metric) Let µ, ν ∈ M(X ). The Hilbert projective distance
between them is defined by

h(µ, ν) = ln
supA∈M(X )

µ(A)
ν(A)

infA′∈M(X )
µ(A′)
ν(A′)

= sup
A∈M(X )

ln
µ(A)
ν(A)

+ sup
A′∈M(X )

ln
µ(A′)
ν(A′)

= sup
A,A′∈X

ln
µ(A)
ν(A)

µ(A′)
ν(A′)

One of the most important properties of Hilbert metric from our point of view is that
of scale variance, i.e. for µ, ν ∈M(X ) and α, β > 0, h(αµ, βν) = h(µ, ν). Thus if µ and ν
are posteriors arising from the filtering problem, for Hilbert projective metric it makes no
difference whether they are normalized or not, and this fact will be convinient for us when
proving robustness result.

Note 1. If the probability measures µ and ν admit density, i.e.:
∫

A f(x)dx =
∫

A dµ(x) and
∫

A g(x)dx =
∫

A dν(x), then Hilbert’s projective metric can be defined as

h(µ, ν) = h(f, g) = sup
x,y∈X

ln
f(x)
g(x)

f(y)
g(y)

In this case for any positive function u: h(fu, gu) = h(f, g).

Another important property of Hilbert metric which makes it a very useful tool in
stability analysis is the following contraction due to Birkhoff. Let K be an integral operator,
then

h(Kµ,Kν) ≤ tanh(C(K)/4)h(µ, ν)

9
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where

C(K) = ln sup
x,y,x′,y′∈X

K(x, y)K(x′, y′)
K(x′, y)K(x, y′)

The following inequality connects the Hilbert metric with the total variation norm:

||µ− ν||TV ≤
2

ln 3
h(µ, ν)

assuring that if the Hilbert metric of two measure sequence tends to zero, then total
variation norm convergence also holds.

2.1.1 Exponential Forgetting

Let us define the forward operator product by

T1,n = GYtFGYt−1F . . . GY0F

It is easy to see that:

πt+1 =
T1,tπ0

(T1,tπ0)(X )

Theorem 2.1.1. Let the dynamical system operator F be a positive kernel integral operator
(i.e. x, y ∈ X ⇒ K(x, y) > 0), and the observation operator GYt positive operator for all
t i.e.: A ⊂ X , ∀y ∈ Y : π(A) > 0 ⇒ (Gyπ)(A) > 0. If for all π ∈ M(X ), Fπ admits
a density, then the Bayesian filter defined by the model (f, g) forgets its prior ditribution
exponentially fast, i.e. for two priors π, π̂ ∈M(X ):

lim
t→∞

h(πt, π̂t) = 0

Proof. As we mentioned above normalizing does not effect the Hilbert projective metric,
so

h(πt+1, π̂t+1) = h(GytFπt, GytFπ̂t)

As Fπ admits a density, using Note 1. leads to

h(πt+1, π̂t+1) = h(Fπt, F π̂t)

using the contraction properties of Hilbert projective metric with positive kernel operators

h(πt+1, π̂t+1) ≤ tanh(C(K)/4)h(πt, π̂t)

which proves the exponential convergence.

Note 2. For the above exponential forgetting it is enough to assume that there exists r
such that T1,r is positive kernel integral operator, as it is argued in [Brian D.O. Anderson
2000]. In finite dimensionan spaces this assumption is equivalent to ergodicity.
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2.1.2 Robust Filtering

Finally we prove that the above exponential forgetting property means that the filter will
be robust to model approximation error.

Let F̂ and F be two dynamical operators ’close’ enough to each other. We will show
that evolving a filter according to F , and another one according to F̂ give ’close’ outputs.
As an application we can use approximate model, still being assured that the filtering
outputs are still close to the original ones.

Theorem 2.1.2. Let the dynamical system operators F and F̂ be positive kernel integral
operators (i.e. x, y ∈ X ⇒ K(x, y) > 0) absulutely continuous to Lebesgue-measure, and
the observation operators Gy and Ĝy be positive for all y ∈ Y. Let π0 and π̂0 be priors, and

πt+1 =
GYt+1Fπt

(GYt+1Fπt)(X )
π̂t+1 =

ĜYt+1F̂ π̂t

(ĜYt+1F̂ π̂t)(X )

If
max{sup

π
h(Fπ, F̂π), sup

π,y∈Y
h(Gyπ, Ĝyπ), h(π0, π̂0)} ≤ ε

then

h(πt, π̂t) ≤
2ε

1− tanh(C(K)/4)

Proof. Similar to to previous proof:

ht = h(πt+1, π̂t+1) = h(GYt+1Fπt, ĜYt+1F̂ π̂t)

Using the triangle inequality:

ht ≤ h(ĜYt+1F̂ π̂t, GYt+1F̂ π̂t) + h(GYt+1F̂ π̂t, GYt+1Fπt)

As F and F̂ is absulutely continuous to Lebesgue measure Fπ and F̂ π admits density, so
using the triangle inequality again leads to:

ht ≤ ε + h(F̂ π̂t, F π̂t) + h(Fπ̂t, Fπt) ≤ 2ε + tanh(C(K)/4)h(πt, π̂t)

Therefore
h(πt, π̂t) ≤ 2ε + 2ετ + 2ετ 2 + . . . τ tε

with τ = tanh(C(K)/4) < 1. Finally:

h(πt, π̂t) ≤
2ε

1− τ
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The theorem can be extended to multi-step ergodic processes.
The above result relies heavily on the mixing properties of the dynamical model, and

the reliability of the observations played no role in the analysis. However observations are
a critical ingredient of the nonlinear filtering problem, and should play a central role in
robustness analysis. There are only few papers in the literature that derive results where
the reliability of the observations play role. Here we review a positive result due to Kushner
and Budhiraja [2] and then provide several examples that show that weakening the mixing
conditions in a meaningful way is a non-trivial task.

The following special systems are studied in [2] . Let the state Xn evolve as before and
let the observations satisfy

Yn = Xn + νn

meaning that the signal is observed in small additive noise. Further, the noise process Wn

is assumed to be bounded in amplitude.
The following “theorem” is proven in [2] :

Theorem 2.1.3. Assume that the model (f, g) is bounded and sufficiently regular, and let
(fk, gk) be a model sequence, with supp(g), supp(gk) ∈ [−M,M ]. Assume furthermore that

lim
k→∞

sup
x∈[−M,M ]

| ln gk(x)− ln g(x)| = 0

Define ρk(.) by
ρk(l) = sup

x∈[−l,l]
|fk(x)− f(x)|

and suppose that Eρk(a + b|ψ1|) → 0 as k →∞ for all positive a, b, where ψ1 is the error
on the prior distribution. Then

lim
k→∞

lim sup
t→∞

E||πt − π(k)
t ||TV = 0

where π(k)
t are the posteriors computed using the approximate models (fk, gk) and || · ||TV

is the total variation norm of distributions.

2.1.3 Non-stable Filter Examples

It is well known that if K (or more generally K(r)) is uniformly positive than F is con-
tracting. In the previous sections we have seen that exponential forgetting of the Bayesian
filter, and thus its stability holds if F is contracting and G > 0. In this section we will give
some examples showing that these restrictions cannot be weakened easily. For simplicity,
in this section we will deal with finite HMMs.

Example 1. Non-forgetting Bayesian filter

Figure 2.1 shows an ergodic Markov chain with F ≥ 0 for which we will give an observation
model such that the resulting Bayesian filter will not forget its prior.
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Figure 2.1: The Markov of Example 1.

The transition matrix we consider is:

F =









0 0 0 1
2

1 1
2 0 0

0 1
2 0 0

0 0 1 1
2









Assume that Y = {y1, y2}, and let the observation model be given by:

G =
(

1 0 1 0
0 1 0 1

)

i.e.: Gy1 = diag(1, 0, 1, 0), and Gy2 = diag(0, 1, 0, 1).
By some tedious calculations, one can verify that this model does not forget its prior,

e.g. take the priors p1 = (1
3 , 0,

2
3 , 0)T , p2 = (1

2 , 0,
1
2 , 0)T .

The example shows that one cannot hope to prove that Bayesian filters will forget their
priors in general.

Another interesting detail about the above example comes out when one chooses the
observation model as

G =









α 0 1− α 0
0 α 0 1− α

1− α 0 α 0
0 1− α 0 α









where 0 < α < 1 and α 6= 0.5. Let us note here that in general (for non-ergodic chains)
forgetting should be required only for priors having the same support. In such a case we
will call the priors to be compatible. The filter of this model will actually forget the prior
exponentially in the above, restricted sense. Note that the posteriors corresponding to the
incompatible priors p1 = (1, 0, 0, 0)T , p2 = (0, 0, 1, 0)T are themselves incompatible.
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Figure 2.2: A Markov chain that just forgets with probability one.

Example 2. A Non-exponentially Forgetting Filter

As shown in the previous section Bayesian filters are not necessarily stable. The question
we are going to investigate here is whether a stable filter is also exponentially stable.

Figure 2.2 shows a 3-state ergodic Markov chain with transition matrix

F =





0 0 1
1 1

2 0
0 1

2 0





Assume the following observation model:

G =





1
2

1
2 0

0 1
2

1
2

1
2 0 1

2





Assume that the prior is (1, 0, 0)T , and the observations we make are:Y0 = 1, Y1 = 2, Y2 =
3, Y3 = 1, . . ., ie: Yt = (t mod 3) + 1.

With this series observations the filter’s forgetting rate is linear. This can be seen
easily by the following reasoning. At time t the possible states of the system are ((t − 1)
mod 3) + 1 or (t mod 3) + 1. The probabilities of being in these states are

P (Xt = (t mod 3) + 1|Ys = (t mod 3) + 1, s ≤ t) ∝
(

1
2

) t
3

and

P (Xt = ((t− 1) mod 3) + 1|Ys = (t mod 3) + 1, s ≤ t) ∝
t
3

∑

i=1

(

1
2

) t
3

as one cannot tell when the system has choosen to “stay” in state 2.
It is easy to see that the state (((t− 1) mod 3) + 1) is getting more probable than ((t

mod 3) + 1) at a linear rate, i.e. the filter’s forgetting rate is linear.
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Figure 2.3: The Markov chain of Exmaple 4. The states are numbered from top to down.

It is important to note that the infinite limit of the observation series is not in the
support of the limit posterior. The example thus shows that any reasonable exponential
stability can only be proven with probability one and only asymptotically.

Example 3. A Locally Similar Example

An even more interesting Markov chain is shown in Figure 2.3. The corresponding obser-
vation matrix is

G =
(

1 1 0 0
0 0 1 1

)

Since the probability of a transition from {1, 2} to {3, 4} and vica versa is small, if the
priors have supports {1, 2} and {3, 4} then the distance of the respective posteriors will
only decrease slowly, as shown in Figure 2.4.

Relative Forgetting

Obviously, if the product operators

Ty1,...,ykπ =
GykF . . . Gy1Fπ

||GykF . . . Gy1Fπ||1

are contractions with a common contraction coefficient, in some norm then the exponen-
tially stability results will continue to hold. One such norm, that is also comfortable to
work with, is the induced L1 norm:

||T ||1 = sup
x∈M(X )

||Tπ||1
||π||1

Let us call a filter multi step contracting if for some k > 0 Ty1,...,yk is contracting for all
y1, . . . , yk ∈ Y .

Here we will show that for Example 2 above (cf. Figure 2.2), the operator of the
corresponding filter is not multi-step contracting. To prove this we compute the product
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Figure 2.4: Simulation results for Markov chain shown in figure 3. Linear forgetting seg-
ments can be seen.(see text)

matrices. The transition matrix is:

F =





0 0 1
1 α 0
0 1− α 0





where α = 1
2 . By inspection one might verify that

GY3FGY2FGY1F =





1 α 0
0 0 0
α α2 1





Therefore T3k = GY3kFGY3k−1F . . . GY1F = (GY3FGY2FGY1F )k. By induction we get:

T3k =





1 α 0
0 0 0

kα kα2 1





If the prior is

p(β) =





β
0

1− β
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then the posterior at time 3k is

p3k(β) =





β
1+βkα

0
βkα+1−β

1+βkα





Clearly,

τ(β1, β2) =
||T3kp(β1)− T3kp(β2)||1
||p(β1)− p(β2)||1

=

∣

∣

∣

β1
1+β1kα −

β2
1+β2kα

∣

∣

∣

|β1 − β2|
=

1
(1 + β1kα)(1 + β2kα)

Now, if β1 = 1
n and β2 = 2

n then

τ(β1, β2) =
1

(1 + k
nα)(1 + 2k

n α)

which, for any fixed k can made as close to 1 as desired, showing that the filter is not
multi-step contracting.

Example 4. Non-stationary observation models

Assume that the observation density is non stationary. Let the Markov chain be the same
as shown in Figure 2.1, and let the observation density at time t be

Gt =





1− 1
2t 0 1− 1

2t 0
0 1− 1

2t 0 1− 1
2t

1
2t

1
2t

1
2t

1
2t





The expected forgetting rate of simulating this filter is shown in Figure 2.5. It should
be clear from the figure that the rate of forgetting is at most linear.

Example 5. A “totally” forgetting filter

The next example highlights an interesting case when the posterior becomes independent
of the prior in a single step: the posterior contracts to a single point. We shall call HMMs
of this type are “totally forgetting”. The Markov chain underlying the example is depicted
in Figure 2.6, the observation model is

G =
(

1
2 . . . 1

2 1 0 0
1
2 . . . 1

2 0 1 1

)

This example shows that under general conditions it is not possible to derive non-asymptotic
forgetting rates.
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Figure 2.5: Expected forgetting rate of a filter with non-stationary observation.

Figure 2.6: Example showing total forgetting.
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2.2 Uniform Convergence of N-IPS

Here we revisit some results of del Moral [12] that will be needed in the next section.
First we need to introduce some notation. Let (X , Ω) be a measure space. For a measure
µ ∈ M(X ) let

‖µ‖TV = sup
A∈Ω

|µ(A)|

be its total variation norm. Further, let us interpret the substraction of measures in the
usual way: (µ− ν)(A) = µ(A)− ν(A).

Let K be a Markov transition kernel on X . Recall that the ergodic coefficient of K is
the quantity α(K) ∈ [0, 1] given by

α(K) = 1− β(K), with β(K) = sup
x,y∈X ,A∈Ω

|K(x,A)−K(y, A)|.

We shall call the number α(K) the Dobrushin ergodic coefficient of K (see [4]).
The quantity α(K) is a measure of contraction of the distance of probability measures

induced by the Markov operator F = FK , corresponding to K. Namely, we have the well
known formula (see [4])

β(K) = sup
µ,ν∈M(X )

‖FKµ− FKν‖TV

‖µ− ν‖TV
. (2.1)

Let us consider the model (1.1)-(1.2). Assume that the observation likelihood function
g(y|x) is such that for some a > 0

1
a
≤ g(y|x) ≤ a (2.2)

holds. Assume that K(x, ·) ∼ m, where m is the Lebesgue-measure and let (with a slight
abuse of notation)

K(x, z) =
dK(x, ·)

dm
(z)

be the Radon-Nikodym derivative of K. Assume that for all (x, z), K(x, z) satisfies

ε ≤ K(x, z) ≤ 1
ε

(2.3)

for some ε > 0. Then, the following theorem holds:

Theorem 2.2.1. Under the conditions stated in this section the uniform bounds

sup
t≥0

E( |
∫

fdπN
t −

∫

fdπt||Y0:t ) ≤ 5 exp(2γ′)
Nα/2 (2.4)

hold for any a measurable function f satisfying ‖f‖∞ ≤ 1, where α and γ′ are given by

α =
ε2

ε2 + γ′
with γ′ = 1 + 2 log a.

The proof combines Theorem 3.1 and Corollary 2.9 of [12].
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2.3 Uniform Convergence with Approximate Models

In this section we consider the N-IPS model applied to approximate models, ĝ(y|x) and
K̂(x, ·).

Theorem 2.3.1. Let ĝ, K̂ be approximate models and π̂0 be an approximation of the prior
π0. Assume that the Radon-Nikodym derivative of both K and K̂ exists w.r.t. the Lebesgue-
measure and let us denote them by K(x, z) and K̂(x, z), respectively. Assume that for some
ε̂ > 0 and â > 0

1
â
≤ ĝ(y|x), g(y|x) ≤ â (2.5)

and
ε̂ ≤ K̂(x, z), K(x, z) ≤ 1

ε̂
. (2.6)

Further, assume that for some β > 0 these approximate entities satisfy

h(Gy, Ĝy), h(F, F̂ ), h(π0, π̂) ≤ β,

where h is the Hilbert projective metrics. Consider the N-IPS model based on the approxi-
mate models and the approximate prior. Let the empirical posterior at time t, as computed
by the N-IPS model, be π̂N

t . Then the following uniform bounds

sup
t≥0

E( |
∫

fdπ̂N
t −

∫

fdπt| |Y0:t ) ≤ 5 exp(2γ̂′)
N α̂/2 +

4β
log(3)(1− tanh(C(K)/4)

(2.7)

hold for any measurable function f satisfying ‖f‖∞ ≤ 1, and where γ̂′ and α̂ are defined
by

α̂ =
ε̂2

ε̂2 + γ̂′
with γ̂′ = 1 + 2 log â.

Proof. By the triangle inequality,

sup
t≥0

E(|
∫

fdπ̂N
t −

∫

fdπt| |Y0:t) ≤

sup
t≥0

E(|
∫

fdπ̂N
t −

∫

fdπ̂t| |Y0:t) + sup
t≥0

E(|
∫

fdπ̂t −
∫

fdπt| |Y0:t), (2.8)

where π̂t is defined by

π̂t+1 =
ĜYtF̂ π̂t

(ĜYtF̂ π̂t)(X )
.

The previous theorem continues to hold for π̂t and π̂N
t because of the positivity assumptions

made in Section 2.2. Therefore, the first term of (2.8) can be bounded by 5 exp(2γ̂′)
N α̂/2 .

By Theorem 2.1.1

h(π̂t, πt) ≤
2β

1− tanh(C(K)/4)
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Since, by the well known inequality (see [4])

‖π̂t − πt‖TV ≤
2

log 3
h(π̂t, πt)

and ‖π̂t − πt‖1 ≤ ‖π̂t − πt‖TV , we arrive at

|
∫

fdπ̂t −
∫

fdπt| ≤ ‖f‖∞ ‖π̂t − πt‖1 ≤
4β‖f‖∞

log(3)(1− tanh(C(K)/4))
.

Taking the expectation of both sides and combining this inequality with that of derived
above for the first term yields the result.
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Chapter 3

LS-N-IPS

In this chapter we propose a modification of the N-IPS algorithm, which we shall call LS-N-
IPS (local search+N-IPS). LS-N-IPS is intended to improve the efficiency of N-IPS under
the assumption that the observations are sufficiently “reliable”. Roughly, this assumption
means that the conditional variance of the observation noise given the past states is smaller
than that of the dynamics.

It is well known that under this assumption N-IPS does not perform very well since most
of the particles will bear a small uniform likelihood owning to the sensitivity (peakiness)
of the observation density. Therefore, a large number of particles is needed to achieve even
a moderate precision.

We believe that the “reliability assumption” holds in many practical cases and is worth
of being studied. In particular, we provide examples of simulated scenarios with this
property, and qualitative measurements are made to show that LS-N-IPS is significantly
more effective than N-IPS. In the next chapter we demonstrate that LS-N-IPS significantly
outperforms N-IPS in a real world visual tracking domain.

3.1 The LS-N-IPS algorithm

The algorithm is as follows:

1. Initialization: Let X(i)
0 ∼ π0, i = 1, 2, . . . , N and set t = 0.

2. Repeat forever:

(a) Prediction: Compute the proposed next states by Z(i)
t+1 = Sλ(f(X(i)

t )+W (i)
t , Yt+1),

i = 1, 2, . . . , N .

(b) Evaluation: Compute w(i)
t+1 ∝ g(Yt+1|Z(i)

t+1), i = 1, 2, . . . , N .

(c) Resampling:

i. Sample k(i)
t+1 ∼ (w(1)

t+1, . . . , w
(N)
t+1), i = 1, 2, . . . , N .

ii. Let X(i)
t+1 = Z

(k(i)
t+1)

t+1 , i = 1, 2, . . . , N .

23
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(d) t:=t+1

As it should be clear that the only difference between LS-N-IPS and N-IPS is the
way they update the positions of the particles. LS-N-IPS uses a non-trivial local search
operator, Sλ, to “refine” the “crude” predictions f(X(i)

t ) + W (i)
t , whilst N-IPS uses the

operator Sλ(x, y) = x.
One should think of Sλ as a local search for refining a particle state such that the

observation likelihood given the current observation Yt+1 is maximized. The purpose of
this is to make the particles become more “relevant”.

In general, the requirement for Sλ is that g(y|Sλ(x, y)) ≥ g(y|x) should hold. The
parameter λ > 0 defines the “search length”. Typically, Sλ(y|x) ≈ argmax{g(y|x̃) | ‖x̃ −
x‖ ≤ λ }. For densities that have simple forms the result of the search can be computed
analytically. For more complicated densities, g can be approximated locally e.g. by fitting
a second order surface on it and then the search can be performed on the approximated
surface.

3.2 The advantage of LS-N-IPS over N-IPS

Since LS-N-IPS can be viewed as an N-IPS algorithm where in each step an approximate
dynamics is used in the prediction step, Theorem 2.3.1 readily states the stability of LS-N-
IPS, i.e., that the tracking error can be kept bounded and reduced (to a limit) by increasing
the number of particles. In this section we will show (using some simulated scenarios) that
LS-N-IPS can indeed improve on the performance on N-IPS under the special conditions
discussed earlier.

3.2.1 A simple example

Consider the linear filtering problem given by the equations Xt = Wt and Yt = Xt + Vt,
where Wt and Vt are i.i.d. Gaussian random variables with Wt ∼ N (0, 1) and Vt ∼
N (0, 0.1).

For this special system, the Kalman-filter estimate is easy to compute in an exact form
and gives X∗

t (= E[Xt|Y0:t]) = 1/(1 + 0.1)Yt. Thus E[(X∗
t − Xt)2 |Xt] ≈ 0.008264X2

t +
0.08264.

Consider LS-N-IPS with Sλ(z, y) = (1− λ)z + λy, where we restrict λ to [0, 1]. The es-
timate of Xt as given by LS-N-IPS is X̂∗

t (λ) = (
∑N

i=1 g(Yt|X(i)
t )X(i)

t )/
∑N

j=1 g(Yt|X(j)
t ). For

λ = 1 we get X̂∗
t (1) = Yt and thus E[(X̂∗

t −Xt)2 |Xt] = 0.1. Note that if |Xt|2 > 0.021 then
LS-N-IPS gives better results with the performance measure V (x; Xt) = E[(x − Xt)2|Xt]
than the Kalman filter (no wonder, though, since the Kalman filter minizes U(x; Y0:t) =
E[(x−Xt)2|Y0:t]). In fact, the estimate X̂∗

t (1) = Yt is the only linear statistics of the past
observations that renders V independent of Xt. In this sense this is the best robust linear
estimate of Xt.
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Figure 3.1: The eastimated variance of LS-N-IPS with 2 particles with respect to object
position and search length.

If λ = 0 then LS-N-IPS gives the estimate that would be given by N-IPS. Clearly, if Xt

takes on an extreme value then for small sample sizes we get w(i)
t ≈ 1/N and the estimate

becomes approximately equal to X̃∗
t = (1/N)

∑N
i=1 X(i)

t . Therefore V (X̂∗
t (0); Xt) ≈ X2

t +
Var(X̃∗

t ) = X2
t + 1. Clearly, this is much worse than 0.1.

In order to confirm these findings, we have run some Monte-Carlo simulations to com-
pute V (X∗

t (λ); Xt) for different values of Xt. Results of the simulations are shown in
Figure 3.1 as a function of Xt and λ (1000 observations were drawn for each case, and for
each observation X∗

t (λ) was computed 1000 times. The resulting variance estimates were
averaged over these 106 runs.) The number of particles was choosen to be 2, but similar
figures can be obtained for bigger values of N except that as N becomes bigger the variance
of the estimate approaches the limit function derived for the Kalman filter. It should be
clear from the figure that LS-N-IPS performs significantly better than N-IPS, especially in
the case of large values of Xt (Xt is shown on the (x) horizontal axis, 1 − λ is shown on
the y axis, and the the z axis corresponds to the variance estimates V ).

3.2.2 Results on a complex system

The dynamics we consider is as follows:
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X̂t+1 = Xt + St+1∆t + Wt

St+1 = (2Bt+1 − 1)St

Ut+1 = χ(|X̂t+1| ≤ K)
Xt+1 = Ut+1X̂t+1 + (1− Ut+1)Xt

∆t+1 = Ut+1(Xt+1 −Xt) +
(1− Ut+1)(Xt+1 − X̂t+1),

where Wt ∼ N (0, σ) are i.i.d. Gaussian random variables, and Bt is a Bernoulli variable
with parameter α. The dynamics can be thought to model a “bouncing ball”(with no
mass), where the ball is bounced at the points −K, +K and at random time instances
(when Bt = 0).

The observation is Yt = Xt + Vt where Vt ∼ N (0, δ) i.i.d. The dynamics is highly
non-linear, so linear filters are out of question1. In the experiments we used α = 0.99 (low
probability of bounce), and σ = 10δ (uncertainity of dynamics is higher than that of the
observation), δ = 0.5, K = 250.

We tested both N-IPS and LS-N-IPS on this problem. Since we are interested in the
performance when the number of particles is small we used N = 10. Time to time, both
N-IPS and LS-N-IPS loose the object, i.e., Dt = | 1

N

∑

i X
(i)
n −Xn)| > θ (we used θ = 25).

In order to make a quantitative comparison we ran 104 simulations of length t = 400 each
and for each T ∈ {1, 2, . . . , 400} estimated the probability of loosing the object at time T
for the first time. Results are shown in Figure 3.2. It should be clear from the figure that
LS-N-IPS performs much better than N-IPS. The SEARCH-ONLY algorithm, also shown
in the picture, is an LS-N-IPS algorithm with “zero” dynamics, i.e. Ẑ(i)

t+1 = Sλ(X
(i)
t , Yt+1).

This algorithm performs much worse than either of the two other ones, underlining the
importance of the role of the dynamics in particle filtering.

Figure 3.3 shows the tracking precision of the same algorithms as a function of the
time. More precisely, the figure shows the estimates of E[Dt|Dt ≤ θ] as a function of t, as
estimated by computing the averages over the 104 runs. The ordering of the algorithms
is the same as for the previous measurements: LS-N-IPS still performs significantly better
than the other two algorithms.

1We have run some simulation with a Kamlan filter for the model that disregards the non-linear factors
of the dynamics. The simulation has shown high sensitivity-the Kalman filter lost the object upon the
first ‘bounce’
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Chapter 4

Applications to Visual Tracking

4.1 Introduction

In this chapter we will deal with the problem of tracking objects based on image sequences.
In the first section we will examine in details spline contour models as these will serve as

the basis of our observation models. Spline contour models have been used succesfully for
object tracking in the prominent work of Isard and Blake [1]. Here we introduce regular B-
spline interpolation, and suggest an algorithm that leads to efficiently computable splines.
These spline contours has some nice features, such as being free of hooks and having smooth
interpolating contours.

In the following section a possible observation model is given for object contour tracking.
It is also shown that local search can be performed efficiently in this framework.

Finally experimental results are given. We will compare the baseline N-IPS model
Bayesian filtering (also known as CONDENSATION algorithm [7],[8]), with the LS-N-IPS
model. These experiments clearly indicate that LS-N-IPS works very well when the number
of particles is small and eventually yields a computationally efficient algorithm.

4.2 Spline Contours

The purpose of this section is to examine some features of regular B-spline algorithms, and
to propose some modifications, to enable us to use spline interpolations in a computation-
ally efficient way.

4.2.1 Regular B-spline Theorems

For simplicity let us consider cubic B-splines only. We believe that our ideas are applicable
to B-splines of any order.

Def 2. A function s : [0, l] → R, where l is a natural number, is called a cubic spline-
function if it is a cubic polynomial over every intervalof the form [i, i + 1], and is twice
continuously differentiable.

29
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A word about the parameter l. Usually it is reasonable for computational and notational
purposes that each polinom, which is part of the spline-function is parameterized from 0
to 1. This means that if we have l pieces of these polynoms forming the spline-function
than the spline-function itself will be naturally parameterized from 0 to l.

Def 3. An n-dimensional spline-function is a function S : [0, l] → Rn whose coordinate
functions are all spline-functions.

Our aim is to find cubic spline-functions fitting that interpolate a number of points.
These points will be called the support points of the spline. It follows from the definition
above that it is sufficient to deal with one dimensional cubic spline-functions.

We will distinguish between open and closed spline functions. A closed spline-function
satisfies s(0) = s(l). Splines can be given as the linear combination of the translations of
single basis function. A closed spline has the form

s(x) =
n

∑

i=0

piϕi−2(x)

where ϕi is the i-th spline basis function, and p0, p1, . . . , pn are the so-called control points.
In the cubic case

ϕ0(x) =























1
6x

3, if x ∈ [0, 1)
−1

2x
3 + 2x2 − 2x + 2

3 , if x ∈ [1, 2)
1
2x

3 − 4x2 + 10x− 22
3 , if x ∈ [2, 3)

−1
6x

3 + 2x2 − 8x + 32
3 , if x ∈ [3, 4]

0, otherwise













and
ϕi(x) = ϕ0(x− i), i > 0

In the above formulas modulo l arithmetic was assumed.
Let us define the i-th support point qi by qi = s(i).

Proposition 1. Let s be a closed cubic spline-function defined by the control points p0, p1, . . . , pn.
Then

qi =
1
6
pi−1 +

2
3
pi +

1
6
pi+1, i = 0, . . . , n

where the indexes are treated mod l.

Proof. Observe that
ϕj(k) = ϕl(h) ⇔ (h− l) ≡ (k − j)

This follows directly from ϕi(x) = ϕ0(x− i). Now

qi = s(i) = pi−1ϕi−3(i) + piϕi−2(i) + pi+1ϕi−1(i) =

= pi−1ϕ0(3) + piϕ0(2) + pi+1ϕ0(1)

yielding the desired result.
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Proposition 2. Let s be a cubic spline-function given by the control points p0, p1, . . . , pn

and let s′ be the derivative of s. Then

s′(i) =
pi+1 − pi−1

2

Proof. Similar to the previous proof we have

s′(i) = pi−1ϕ′0(3) + piϕ′0(2) + pi+1ϕ′0(1)

By substitution we get the result.

4.2.2 Control Points versus Support Points

In the previous section we have seen that in the case of closed spline-functions, control
points can be converted to support points by multiplying the vector (p0, p1, . . . , pn)T by
the matrix

A =
1
6











4 1 0 . . . 0 1
1 4 1 0 . . . 0
... . . . ...
1 0 . . . 0 1 4











Now, in order to compute control points pi given the support points qi, we want to
compute A−1q, provided that A−1 exists. However, we would like to compute A−1 explicitly
and also we are interested in the asymptotic behavior of A−1 as n goes infinity. In particular
for computational efficiency, we would like to replace near-zero elements of A−1 with zero.
We would like to answer two questions then: how many elements can be set to zero if we
fix some bound ε and how big the resulting approximation error will be.

In the followings we will prove some more general theorems about the inverse of circulant
matrixes. These theorems will imply fast computation of the inverse of the above matrix,
and an even faster approximation of it.

Def 4. A is a circulant matrix, if

A =











a1 a2 . . . an

an a1 . . . an−1
...

... . . . ...
a2 a3 . . . a1











We will use circ(a1, a2, . . . , an) to denote A.

Proposition 3. Let A = circ(a1, a2, . . . , an). Then, provided that A−1 exists, it is also
circulant and the vector b ∈ Rn for which A−1 = circ(b) satisfies bT Si

ra = δi0, i = 0, . . . , n−
1.
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Proof. Observe that if a = (a1, an, an−1, . . . , a2)T , then A = [a, Sra, S2
ra, . . . , Sn−1

r a], where
Sr is the right-shift matrix, i.e: Sr = circ(0, 0, . . . , 0, 1).

Let B = A−1 , B = [bT
1 , . . . , bT

n ]T . As BA = I, we have: bT a = 1 and bT Si
ba = 0 if

i = 1, . . . , n− 1. Since Si
r = Sj

r provided that i ≡ j (mod n), clearly:

(bT Sn−i
r )Sj

ra = δij

where δij is the Kronecker-delta.
Therefore circ(b) is the left inverse of A and thus (since left inverses are unique) B =

circ(b).

Proposition 4. If A is an invertible, circulant and symmetric matrix, and

A−1 = circ(a1, a2, . . . an)

then ai = an+2−i

Proof. If A is symmetric its inverse is also symmetric and, as it was shown in the previous
theorem, if A is circulant its inverse is also circulant. From this, the result follows directly.

Theorem 4.2.1. Fix n ∈ N , let a = (a, 1, 0, . . . , 0, 1)T and A = circ(a) ∈ Rn×n. Assume
that B ∈ Rn×n is such that AB = cI and b = circ(b1, b2, . . . , bn)T , B = circ(b) and bn = b2.
Let B̂ be defined by

b̂ = circ(−(ab1 + b2), b1, b2, . . . , bn, b1)T , B̂ = circ(b̂)

and let Â be defined by

Â = (a, 1, 0, . . . , 0, 1) = circ(â) ∈ R(n+2)x(n+2)

Then
ÂB̂ = (ab̂1 + 2b̂2)I = (2b1 − a2b1 − ab2)I

Proof. According to Proposition 3, all we need to prove is

b̂T Si
râ = (2b1 − a2b1 − ab2)δi0, i = 0, . . . , n + 1

As ST
r = Sl this is clearly equivalent to

(Si
l b̂)

T â = (2b1 − a2b1 − ab2)δi0, i = 0, . . . , n + 1
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For i = 0 this gives

b̂T â = a(−ab1 − b2) + 2b1 = 2b1 − a2b1 − ab2

For i = 1, we have

(Slb̂)T â = ab1 − (ab1 + b2) + bn = ab1 − (ab1 + b2) + b2 = 0

When 2 ≤ i ≤ n, the first and last elements of b̂ are shifted to some position where they are
multiplied by some zero elements of â. Since â is augmented with two zeroes as compared
to a one gets by inspection that

(Si
l b̂)

T â = (Si−1
l b)T a = 0

Here the last equality is obtained from AB = cI and Proposition 3.
For i = n + 1, we have

(Sn+1
l b̂)T â = ab1 − (ab1 + b2) + bn = ab1 − (ab1 + b2) + b2 = 0

concluding the proof.

Corollary 1. Let A = (a1, a2, 0, . . . , 0, a2) ∈ Rn×n; a2 6= 0,
B = circ(b1, b2, . . . , bn); AB = cI, c 6= 0,
Â = (a1, a2, 0, . . . , 0, a2) ∈ Rn+2×n+2,
b̂ = circ

(

−
(

a1b1
a2

+ b2

)

, b1, b2, . . . , bn

)

, B̂ = circ(b̂); AB = cI, c 6= 0.
Then

ÂB̂ = (2a2b̂2 + a1b̂1)I = (2a2b1 −
a2

1

a2
b1 − a1b2)I

Proof. Let A′ = 1
a2

A Then A′B = c
a2

I. By Theorem 1

Â′B̂ = (2b̂2 +
a1

a2
b̂1)I = (2b1 − (

a1

a2
)2b1 −

a1

a2
b2)I

and therefore

ÂB̂ = a2Â′B̂ = (2a2b̂2 + a1b̂1)I = (2a2b1 −
a2

1

a2
b1 − a1b2)I

Proposition 5. If A = (a1, a2, 0, . . . , 0, a2) and |a1
a2
| > 2, then A admits an inverse.

Proof: The result follows directly from the fact that A is a diagonally dominant,
symmetric matrix.



34 CHAPTER 4. APPLICATIONS TO VISUAL TRACKING

4.2.3 Approximating the Inverse

Consider a second order recursive sequence of the form:

xn+1 = −(axn + xn−1)

where a = a1
a2

. It is well known that the solution of this can be written as

xn = c1αn
1 + c2αn

2

where α1 and α2 are the roots of the characteristic polynomial

α2 + aα + 1 = 0 (4.1)

The constants c1 and c2 can be determined from the initial conditions, i.e., from x0 and
x1.

Proposition 6. With the above notations |α1| < 1 and |α2| > 1 if and only if |a| > 2.

Proof. From Viète-formulas: α1α2 = 1 and α1 + α2 = −a. If |α1| < 1 and |α2| > 1, so
α1 6= α2, then

1 = α1α2 <
α1 + α2

2
=

a
2

as α1 and α2 both have the same sign.
If |a| > 2, then |α1 + α2| > 2 and as they have the same sign and α1α2 = 1, we have

|α1| < 1 and |α2| > 1.

Theorem 4.2.2. Let An = circ(a1, a2, 0, . . . , 0, a2) ∈ Rnxn. If
∣

∣

∣

∣

a1

a2

∣

∣

∣

∣

> 2

and
A−1

n = circ(yn
k+1, y

n
k , . . . , yn

1 , yn
2 , . . . , yn

k )

where k =
[

n
2

]

, then

lim
n→∞

yn
l =

α−l
2

2a2α−1
2 + a1

where |α2| > 1 and α2 is the root of the characteristic polynomial 4.1.

Remark: The condition
∣

∣

∣

a1
a2

∣

∣

∣ > 2 is the same as in Proposition 5.
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Proof. Observe that according to Proposition 5, A admits an inverse. If xk is the recursive
sequence given by

xn+1 = −(
a1

a2
xn + xn−1)

then, Corollary 1 yields

A−1
n =

1
2a2xk + a1xk+1

circ(xk+1, xk, . . . , x1, x1, x2, . . . , xk)

if n = 2k + 1 and

A−1
n =

1
2a2xk + a1xk+1

circ(xk+1, xk, . . . , x1, x2, x3, . . . , xk)

if n = 2k
Let us take a closer look at the matrix elements. They have the form

xi

2a2xk + a1xk+1

For n odd this gives
co
1α

i
1 + co

2α
i
2

2a2(co
1αk

1 + co
2αk

2) + a1(co
1α

k+1
1 + co

2α
k+1
2 )

and for n even we have
ce
1α

i
1 + ce

2α
i
2

2a2(ce
1αk

1 + ce
2αk

2) + a1(ce
1α

k+1
1 + ce

1α
k+1
2 )

Fix l = k + 1 − i and let k → ∞. Observe that since |α1| < 1 thus αk
1 → 0, and αi

1 → 0.
This yields the limits

yl =
α−l

2

2a2α−1
2 + a1

It is easy to see that the convergence is exponential, proving the theorem.

The above theorem provides us with a tool to compute the inverses in an efficient way,
where yl is replaced by zero for small values. The recursive-sequence in the support point
transfomation case is

xn = −4xn−1 − xn−2

yielding

yl =
(−2−

√
3)−l

1
3(−2−

√
3)−1 + 2

3

According to the above formula we approximate A−1
n with a circulant matrix keeping

just those elements for which: | (−2−
√

3)−l

1
3 (−2−

√
3)−1+ 2

3
| < ε.

It is easy to check that the 6th element of the sequence is already closer to zero than
10−4. This means that instead of the exact sequence, it is enough to work with 11 elements:
A−1

n = circ(y0, y1, . . . , y5, 0, . . . , 0, y5, y4, . . . , y1). When the spline is defined by less than 11
support points the exact inverse should be calculated.
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4.2.4 Open Splines

In the previous section we have shown a computationally efficient method for calculat-
ing control points from support points for closed cubic spline-functions. We do these for
open spline-functions. This we do using the following trick: instead of support points
q1, q2, . . . , qn treat the support point sequence q0, q1, . . . , qn, qn−1, qn−2, . . . , q1, and fit a
closed spline-function on it.

Proposition 7. The spline function given by the trick above is symmetric in the sense
that

s(n− x) = s(n + x), x ≤ n

Proof. We prove first that the control points are “symmetric”, i.e:

pn−i = pn+i, 0 < i < n

First note that the new support point sequence has an even number of members. As we
saw previously the matrix that transforms support points to control points has the form:

A−1
n = circ(yk+1, yk, . . . , y1, y2, y3, . . . , yk) = circ(yT )

Let q = (q0, q1, . . . , qk, qk−1, . . . , q1) and let

R =















1 0 . . . 0 0
0 0 . . . 0 1
0 0 . . . 1 0
...

... . . . ...
...

0 1 . . . 0 0















Observe that R = RT and Rq = q.
As A−1

n q = p , pn−i = (Sn−i
r y)T q and pn+i = (Sn+i

r y)T q. Using the special form of y it
can be seen by inspection that

RSn−i
r b = Sn+i

r b

With this, the proof follows directly:

pn+i = (Sn+i
r y)T q = (RSn−i

r y)T q = (Sn−i
r y)T Rq = (Sn−i

r y)T q = pn−i

Now the result follows from

s(x) =
n

∑

i=0

piϕi−2(x) +
n−1
∑

i=1

pn−iϕn+i−2(x) =
n

∑

i=0

piϕi−2(x) +
n−1
∑

i=1

piϕ2n−i−2(x) =
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=
n

∑

i=0

piϕ−2(x− i) +
n−1
∑

i=1

piϕ−2(x− 2n + i)

and thus

s(n− x) =
n

∑

i=0

piϕ−2(n− x− i) +
n−1
∑

i=1

piϕ−2(n− x− 2n + i)

and

s(n + x) =
n

∑

i=0

piϕ−2(n + x− i) +
n−1
∑

i=1

piϕ−2(n + x− 2n + i)

Exploiting that ϕ−2 is even and its support is [0, 4], the prrof is ready.

4.3 Object tracking using B-spline contour models

In this section we propose an implementation of LS-N-IPS for object tracking using B-spline
contour models.

In order to implement LS-N-IPS one needs to define three objects: the dynamics used
in the prediction step, the local search operator and the observation density. In our case
the state space will consist of the pose of the object to be tracked along with the previous
pose (the dynamics is a second order AR process). The pose defines a contour mapped
onto the camera plane (i.e., onto the image).

The idea is to use this B-spline based contour model as the basis of the observation
calculations: the better the contour fits the image, the more likely the corresponding pose
is. B-splines, however will be represented here by their support points (i.e. by points along
the curve) as opposed to the usual represenation of B-splines via their control points.

This is needed since the local search is implemented on the image by finding an allowable
spline contour in the vicinity of the original one that fits the image the best in that given
small neighbourhood. This search is implemented by finding the most likely locations of
edges along the normals of the original curve at the support points. By using support
points instead of control points we spare some matrix vector products that would involve
matrices whose size scales with the complexity of the contour. On the other hand, the
usage of support points lefts the complexity of the algorithm intact otherwise.

In the following subsections we provide the details of the algorithm.

4.3.1 Spline contours, configuration space

Let us consider the spline curve s : [0, L] → R2 defined by its support points qx =
(qx

1 , . . . qx
n)T , qy = (qy

1 , . . . q
y
n)T , i.e: s(t) = ((A−1qx)T ϕ(t), (A−1qy)T ϕ(t)), where ϕ(t) =
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(ϕ1(t), ϕ2(t), . . . , ϕn(t))T are the usual B-spline basis functions (cf. [1]) and s(i) = (qx
i , qy

i )
T .

A is the linear transformation mapping control points to support points.
Let q0 = ((qx

0 )T , (qy
0)

T ) be a vector of support points defining the contour s0. If G is
a group of similarity transformations of the 2D plane (R2) then one can find a matrix
W = WG,q0 such that T ∈ G iff for some z ∈ Rk, the support vector q = Wz + q0 yields
the spline curve T s0 (we use the convention that z = 0 corresponds to T = Id). Rk then
corresponds to the set of allowed configurations of the object.

Note 3. If G is the group of Euclidean similarities of the plane then

W =
(

1 0 qx
0 −qy

0
0 1 qy

0 qx
0

)

, (4.2)

where 0 = (0, 0, . . . , 0)T , 1 = (1, 1, . . . , 1)T .

4.3.2 Implementation of the Local Search

Assume that a contour (s) corresponding to some pose (z) is given. Blake and Isard
define the likelihood of the contour given the image (the observation) as the product of
the individual “likelihoods” of edges being located at some measurement points along the
spline curve [7].

Motivated by this definition, our local search algorithm searches for maximal edge
‘likelihood’ values along the normals in the vicinity of the measurement points, the neigh-
borhood itself defined by the search length, l > 0. The measurement points are chosen to
be the support points (qx

1 , qy
1)

T , . . . , (qx
n, qy

n)T .
Assume that the search yields the points (q̂x

1 , q̂y
1)

T , . . . (q̂x
n, q̂y

n)T and let q̂ = (q̂x
1 , . . . q̂x

n, q̂y
1 , . . . q̂

y
n)T

(for an example see Figure 4.2). Let ŝ be the spline curve corresponding to q̂.
The next step is to find a configuration whose corresponding spline curve matches ŝ

the best: ẑ = argminz∈Rk‖sz − ŝ‖2
2. Here sz denotes the spline curve corresponding to the

configuration z, i.e., the spline curve corresponding to the support vector qz = Wz + q0.
It is well known that if s is the spline contour corresponding to q then ||s||22 can be

expressed as a function of q alone. In particular,

||s||22 =
1
L

∫ L

0
s2(t)dt = qT

(

B 0
0 B

)

q = qTUq,

where

B = A−T
(

1
L

∫ L

0
ϕ(u)ϕ(u)T du

)

A−1.

Therefore, if we let ‖q‖2
S = qT Uq be the weighted `2 norm then ẑ = argminz∈Rk‖Wz + q0−

q̂‖2
S. Now, by standard LMS calculations ẑ = W+(q̂− q0), where W+ = (W TUW )−1W TU .

The corresponding projected support vector shall be denoted by q⊥ = Wẑ + q0.
It remains to specify the likelihood of the projected particle x⊥ (the previous config-

uration is not used in the observation likelihood calculations as still images reflect only
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Figure 4.1: Observation on the curve normals(black), and maximum value points(grey) are
calculated.

momentarily information). The ideal likelihood would be the product of the likelihoods
of the edges now measured at the points defined by the new support vector q⊥. How-
ever, in favour of speed we would like to reuse the maximal likelihoods found during the
search process. Therefore we start with the product of these and compensate for the errors
introduced by this approximation.

Firstly, note that it is reasonable to devalve this value by a value proportional to the
distortion caused by the projection, i.e. by ||q⊥ − q̂||S: the larger the distortion is the less
the likelihood of the given configuration should be, since a large distortion means that the
spline curve defined by q̂ was far from the template.

However, ||q⊥− q̂||2 must be normed by the “scale” of the corresponding configurations:
remember that ||q⊥− q̂||2 equals to the L2 distance between the spline curves corresponding
to q⊥ and q̂, i.e., the area in between these curves. Now if q⊥ and q̂ correspond to “big”
contours then ||q⊥ − q̂||2 will be “big” itself. Therefore ||q⊥ − q̂||2 must be scaled by the
size of the represented object. In a somewhat ad hoc way, we have chosen to norm this by
d2, where d is the scale of the object being in the configuration x⊥. The search length was
also scaled by d, so that the search length will correspond to a fixed search length of the
physical world. In summary, the algorithm works as follows:

Evaluation Algorithm with Local Search. (Inputs: image (I), configuration (x))

1. Calculate the scaling factor d given x. (In case of Eucleidan similarities d =
√

(1 + x3)2 + x2
4.)

2. Calculate the search length l = dl0, where l0 is a user defined parameter.

3. For all normal of lines of the contour at (qx
i , qy

i ), where q = Wx+ q0 (i = 1, 2, . . . , n):

• For every point on the normal and within the search length l calculate the
likelihood of an edge being at that point.

• Select the maximum value along the normal.
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4. Compute v, the product of the obtained maximum values, and let the locations of
the maximums define q̂.

5. Calculate the best LMS configuration

x⊥ = W+(q̂ − q0)

and the projected support vector q⊥ = Wx⊥ + q0.

6. Return

c = v
d2

||q⊥ − q̂||2
Figure 4.2 shows a contour corresponding to a single particle before (white) and after the
local search (grey). It should be clear from the figure that the local search adjusted contour
has a much higher likelihood of being the correct contour of the hand on the given image.

Note 4. The search length at different support points can be different depending on the
local characteristic of the template curve at each point. Actually the whole measurement
process can be specialized at each normal lines, and this is how multiply color object can be
tracked.

Figure 4.2 shows a contour corresponding to a single particle before (white) and after
the local search. It should be clear from the figure that local search adjusted the contour
to a much higher likelihood given the state of the hand.

Note 5. The calculation of W+ is computationally efficient since multiplication with U∗
(being circulant matrix) needs O(n) as it was argued before.

4.4 Experiments

The proposed algorithm was tried in a number of visual object tracking problems. In
the scenarios shown here the hand-tracking was attempted. Edge likelihoods along the
normals were computed as the product of the edge strength along the normal and the
color match “inside”the object. For color matching a Gaussian density is used that is
trained on the first frame. In the present implementation users have to draw the contour
of the object to be tracked on the first frame by determining the support points of the
curve. For G, the full Euclidean similarity group of the plane was chosen with W given
by Equation 4.2, and thus the scale of an object with configuration z = (z1, z2, z3, z4)T is
given by d =

√

(1 + z3)2 + z2
4 .

The state is defined by the pose and the previous pose (i.e., X = R8). The pose space
is defined as the parameterization of the transformation group defined by the subgroups
induced by x, y-translations, rotations, and scaling, i.e., the pose space and the configura-
tion space are non-linearly related. A second order dynamics was fitted for each dimension
of the pose space, independently of each other. The dynamics of scale and rotation were
adjusted by hand due to insufficient training data.
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Figure 4.2: Comparing the contour predicted and the contour adjusted in the local search
procedure. The white contour is the predicted contour, black + signs are at the maximum
values around the contour. The grey contour is the one given by the local search.
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Processing step Time [s] Percentage
Image preparation 0.012 28.3 %
Likelihood calculation and local search 0.0248 58.5 %
Prediction and update 0.055 13.2 %
Total 0.0424 100 %

4.5 Results

The proposed algorithm was tested in a number of tracking tasks. In general, the algorithm
performed very well under a wide range of conditions even with very small particle sizes,
such as N = 50. Thanks to relying mostly on contour (i.e. shape) information, the
algorithm could work under a wide range of illumination conditions, even when the lighting
was weak.

Objects were tracked reliably and precisely (see Figures 4.4 and 4.5). In case of sudden
movements the tracker occassionally lost the object but it could quickly recover in all of the
cases. This can be explained by the relatively high variance of the noise of the dynamics
and the high specificity of the observation likelihood: If the object is lost then all particles
become roughly equally weighted and the system starts to perform a random diffusion,
exploring the image. If some particle becomes in the vicinity of the true object position the
local search refines the particle position quickly, the weight of the corresponding particle
becomes large and the particle is reproduced with high probability in many copies in
the resampling step. This causes the tracker to recover. If the shape information is not
sufficiently specific then the tracker may lock on spurious “objects” having a contour similar
to that of the object to be tracked. However, this is a common property of contour based
tracking algorithms and is thus not special to LS-N-IPS. Note that no special mechanism
was needed for the reinitialization of the tracker and the tracker was capable of finding the
object to be tracked even when the configuration of the initial particle set was randomized.

Figure 4.5 and 4.4 shows every 15th frame of a typical tracking session. This image
sequence was recorded at 30 frames/second. The number of particles was chosen to be 100,
l0 = 10. The image resolution was 240× 180. Processing times projected for one frame are
shown in the table below, measured on a 1 GHz Pentium 4 computer.

Note that optimization of the algorithm is still possible. In the image preparation step
the color likelihoods are computed for each pixel (this step could be eliminated and the color
likelihoods be computed only when and where they are needed). The prediction and update
steps require negligable time. Most of the time is spent on calculating the observation
likelihoods and the local search procedure. We have also made measurements with the local
search switched off (and using the unmodified observation likelihoods). This corresponds
to running N-IPS (or CONDENSATION). We found that running the algorithm in this
way, N = 200 particles requires roughly the same amount of processing time than that of
needed by LS-N-IPS with N = 100. In Figure 4.3 the tracking results of N-IPS can be
seen with N = 200 particles. It should be clear after comparison with Figure 4.4 that LS-
N-IPS performs significantly better under the “equivalent running time” condition. N-IPS
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Figure 4.3: Tracking an object with the N-IPS algorithm. The number of particles was 200.
Images are shown for every 15th frame.

was pretty much useless for tracking more complex shapes, such as hands, unless N was
raised above 2000 which would allow a tracking speed of less than 3 frames/second, to be
compared with the approximate tracking speed of 23.6 frames/second obtained with the
proposed algorithm.

4.6 Related Work

Sequential importance sampling with resampling [10, 15, 5], or SIR (also known as iCON-
DENSATION [8] in the image processing community) is designed to overcome problems
related to peaky posteriors. The design parameter of this algorithm is a so-called proposal
distribution whose purpose is to concentrate particles to the highly probable parts of the
state space.

Unfortunatelly, good proposal distributions are not easy to design. The ideal proposal
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Figure 4.4: Tracking an object with the LS-N-IPS algorithm. The number of particles was
100. Images are shown for every 15th frame.
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Figure 4.5: Tracking hand in clutter with LS-N-IPS sample size 100. Black contour shows
particles with high observation coefficients, white contour show the predicted position.
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distribution depends both on the dynamics and the most recent observation. However, a
proposal should also be fast to sample from. Blake and Isard suggest to use a density fitted
to the output of a color detector as the proposal distribution. The for of the density in
their application is a mixture of Gaussians, so it is cheap to sample from it. Unfortunately
however, since the importance function is not defined on the speed of the object, motion
coherence information is used by this algorithm in a limited way. Despite this, they were
able to obtain excellent results with particle sizes in the range of 150−400. Note that their
algorithm uses an unusual O(N2) step1 (for computing the importance weights). We have
run some experiments and observed that the computation time of this O(N2) step starts
to dominate the rest of the computations already for medium values of N .

The Auxiliary Variable Method (AVM) by Pitt and Shephard resembles LS-N-IPS
more closely. In this method the proposal is a mixture of the prediction densities with the
mixture coefficients defined as some observation likelihoods computed at certain points.
These “anchor” points conceptually correspond to the predicted next states of the particles
but can be chosen by means of some deterministic computation, e.g., by chosing the most
likely next states (based on the prediction density) or the expected next states.

This method takes into account both the observation and the prediction densities.
However, even this method will be inefficient when the observation density is highly peaky.
In some sense, this method can be viewed as the dual of our method: it uses the prediction
density to search for likely particles, whilst our method uses the observation density to
guide the search. There seems to be a natural way to incorporate local search into the
AVM algorithm by using a local search on the observation density to locate the positions
of the anchor points. This would yield an unbiased particle filter. Unfortunately, the
additional sampling steps that sample from the mixture prediction density would make
this algorithm inefficient for peaky observations and high variance prediction densities.

1In fact, it seems to the authors of this article that the usual O(N) reweighting step would be sufficient
(and correct) for their algorithm, as well.
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Conclusions and Future Work

We have introduced the LS-N-IPS algorithm, a modification of the basic N-IPS algorithm.
The algorithm was argued to perform significantly better than the baseline N-IPS algorithm
in the small particle size limit.

A theoreticaly analysis of the stability and robustness of the arising filters was studied
using powerful techniques from the theory of Markov chains. A new result concerning
robust approximate tracking was derived. The main assumptions used in these results is
the (one-step) mixing property of the Markov models and the uniform positivity of the
observation likelihood functions. In these results the role played by the observations is
less characterisics as one would desire. A number of examples were given highlighting the
difficulties when trying to weaken these conditions. In the future we plan to actually prove
some positive results with weakened ergodicity assumptions.

The proposed model was applied to the problem of object tracking. Spline-countour
and color matching based observation models were developed and the models were tested.
In accordance with the expectations, the LS-N-IPS algorithm did perform significantly
better than the baseline N-IPS algorithm.

Future work in the image processing area will include speeding up the algorithm by
clever organization of the computing steps. Another important line of research is to con-
sider alternative, more complex observation models since when used with simple, not suf-
ficiently discriminatory contours contour based observations become sensitive to clutter.
Possibilities include changing the search length locally, using local color models at the dif-
ferent measurement points to track multi-color objects, or using texture information. Yet
another interesting alternative is to employ a local search operator in the style of SSD [3]
that would use templates instead of contours. Further, it is very challenging to attempt
to track more complex, multi-part objects or multiple objects and incorporate interaction
between the objects (occlusion) into the model. Fortunately, the proposed algorithm kept
much of the similarity of the original N-IPS algorithm and thus combining it with other
advanced algorithms, such as partitioned sampling [11] should be a routine work. This
way, we hope to be able to build systems that not only process the images but understand
them, as well, at least to some tent.

47
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Appendix A

The N-IPS Algorithm

In this chapter we provide the pseudocode of the N-IPS (N Interacting Particle System)
algorithm, also known as CONDENSATION [7] or the resampling method. The input of
this method are π0, f , g, Y1, Y2, . . . and it is assumed that can sample from the state noise
process Wt.

1. Initialization:

• Let X(i)
0 ∼ π0, i = 1, 2, . . . , N and set t = 0.

2. Repeat forever:

• Compute the proposed next states by Z(i)
t+1 = f(X(i)

t ) + W (i)
t , i = 1, 2, . . . , N .

• Compute w(i)
t+1 ∝ g(Yt+1|Z(i)

t+1), i = 1, 2, . . . , N .

• Sample k(i)
t+1 ∝ (w(1)

t+1, . . . , w
(N)
t+1), i = 1, 2, . . . , N .

• Let X(i)
t+1 = Z

(k(i)
t+1)

t+1 , i = 1, 2, . . . , N .
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Appendix B

The LS-N-IPS Algorithm

Here we provide the pseudocode of the LS-N-IPS algorithm.

1. Initialization:

• Let X(i)
0 ∼ π0, i = 1, 2, . . . , N and set t = 0.

2. Repeat forever:

• Compute the proposed next states by Z(i)
t+1 = Lλ(f(X(i)

t ) + W (i)
t ; Yt+1), i =

1, 2, . . . , N .

• Compute w(i)
t+1 ∝ g(Yt+1|Z(i)

t+1), i = 1, 2, . . . , N .

• Sample k(i)
t+1 ∝ (w(1)

t+1, . . . , w
(N)
t+1), i = 1, 2, . . . , N .

• Let X(i)
t+1 = Z

(k(i)
t+1)

t+1 , i = 1, 2, . . . , N .
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Appendix C

The Auxiliary Variable Method

Here we provide the pseudocode of the AVM by Pitt and Shepard.

1. Initialization:

• Let X(i)
0 ∼ π0, i = 1, 2, . . . , N and set t = 0.

2. Repeat forever:

• Compute the basis points µ(i)
t+1 e.g. by µ(i)

t+1 = f(X(i)
t ).

• Generate Z(k)
t+1), k = 1, 2, . . . ,, with R ≥ N from

N
∑

i=1

g(Yt+1|µ(i)
t+1)

∑N
j=1 g(Yt+1|µ(i)

t+1)
f(·|X(i)

t ).

e.g. by first generating a random variable L(k)
t+1 taking values in {1, 2, . . . , N}

with distribution P (L(k)
t+1 = i) = g(Yt+1|µ(i)

t+1)PN
j=1 g(Yt+1|µ(i)

t+1)
and then let Z(k)

t+1 = f(X
(L(k)

t+1)
t )+

W (k)
t .

• Calculate the importance weights

w(k)
t+1 =

g(Yt+1|Z(k)
t+1)

g(Yt+1|X
(L(k)

t+1)
t )

, k = 1, 2, . . . , R

• Sample k(i)
t+1 ∝ (w(1)

t+1, . . . , w
(R)
t+1), i = 1, 2, . . . , N .

• Let X(i)
t+1 = Z

(k(i)
t+1)

t+1 , i = 1, 2, . . . , N .
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